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Calculation of magnetic component of wire antenna 
electromagnetic field 

 
 

Abstract. The possibility of analytical solution to calculation of azimuthal component of magnetic field intensity of wire antenna simulated by short-
circuit current is demonstrated. For this purpose boundary condition on a cylindrical surface corresponding to the antenna surface presented by 
Fourier series is proposed. 
 
Streszczenie. W artykule opisano analityczną metodę wyznaczania charakterystyki natężenia pola magnetycznego anteny kablowej. W tym celu, 
korzystając z szeregu Fouriera, zaproponowano warunek brzegowy dla powierzchni cylindrycznej, adekwatnej do powierzchni anteny. (Obliczenia 
składowej magnetycznej pola elektromagnetycznego anteny kablowej).  
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Introduction 

Wire antennas are widely used in practice due to their 
relatively simple design and possibility to provide the 
necessary technical characteristics. At present such 
antennas can be calculated by a number of analytical 
methods based on a simplified notion of the antenna as a 
dipole radiator [1, 2]. Application of another conventional 
analytical solution for the antenna of the considered type, 
used at great distances from it [2], is connected with evident 
errors in the calculation of antenna parameters. This 
conditioned the use of numerical methods, realized by 
means of relevant software products, for such calculations. 
In particular, [3] contains description of the methods and 
wire antenna parameters calculation results on the basis of 
application of the finite elements method. 
 The purpose of this paper is to indicate the possibility of 
analytical solution to the field problem posed and solved 
numerically in [3]. 
 
Problem statement 

The paper deals with consideration of a wire antenna 
presenting an unbalanced vibrator situated over the ground 
plane; a coaxial circuit inner conductor is the body of the 
antenna (Fig.1). 

 
 
Fig. 1. A circuit of an unbalanced vibrator in the form of a wire 
antenna 
 

 In a general case electromagnetic field of such an 
antenna in a steady radiation mode is described by the 
following system of equations (Maxwell equations) [2]: 
(1)  EjHrot  , 

(2)  HjErot  , 

(3)  0Hdiv , 

(4)  0Ediv   

where H  and E  are intensity vectors of electromagnetic 
field magnetic and electric components, respectively;  and 
  are electromagnetic field existence domain permittivity 

and permeability, respectively;   – excitation angular 

frequency; j  – imaginary unit ( 12 j ). 

If this system of equations is reduced to the equation 

just concerning magnetic field intensity H  vector, it will be 
possible to write down equation [2, 3] 

(5)    02
0  HkHrotrot  

where 0k  – a wave number. 

Taking into account the fact that the considered antenna 
is axially symmetrical, it can be stated that magnetic field 
has only one azimuthal component H  in the accepted 

cylindrical coordinate system (Fig. 1). It enables writing 
down a partial differential equation for H  (scalar 

Helmholtz equation) instead of (5) 

(6)  02
0   HkH , 

which should be solved for the upper half-space, taking into 
consideration the boundary conditions on the ground 
surface ( 0z ), on the antenna symmetry axis ( 0 ) and 

on the external boundary of the analyzed area designated 
as SG  in Fig.1.  

In equation (6) Laplacian H  for the accepted 

cylindrical coordinate system (Fig. 1) cannot be expanded 
just as scalar Laplacian of the form:  
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It should be taken into account that this Laplacian is 

obtained after the expansion of )( Hrotrot  in (5), and, 

consequently, in the general case is the Laplacian of vector 

H . I.e. in the considered case, when writing down 
Helmholtz equation for magnetic intensity H  in cylindrical 

coordinate system, after appropriate expansion of 

)( Hrotrot , the following equation should be used instead 

of (6). 
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Further task consists in analytic solution to equation (7) 
in the designated analyzed area (Fig. 1). 

It should be noted, that with 00 k  (magnetic field is 

stationary and 0 ) expression (7) in its form is 
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analogous to Poisson’s equation for the azimuthal 
component of the vector magnetic potential described in 
[4, 5]. However, in this case 00 k . Besides, physical 

nature of magnetic field intensity and vector magnetic 
potential is different. Therefore a direct use of the results of 
papers [4, 5] in this case is not possible. Although hereafter 
we follow the general approach described in [4, 5]. 
 
General solution to equation (7) by variable separation 
method 

To solve equation (7) analytically a conventional 
variable separation method is used. It consists in 
representation of the required function (intensity H ) in the 

form of product 
(8)  )()( zZRH   

where )(R
 
is a function depending only on coordinate  , 

and  zZ  is a function depending only on coordinate z . 

 Substitution of (8) into (7) makes it possible, after simple 
transformations, to write down the following equality  
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that can also be presented in the form 
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Then on the assumption of the fact that the left part of 
equation (10) only presents the function of coordinate  , 

and the right part of this equation only presents the function 
of coordinate z, it is possible to write down two equations 
instead of one (10) 
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where   – is some arbitrary number. 
Thus, due to application of variable separation method, 

solution (7) can be reduced to solution of two equations (11) 
and (12). 

As to equation (12), it can be written down in the form  
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for which its general solution is known and can be written 
down as [6] 
(14)     zCzCzZ cossin)( 21   

where 1C
 
and 2C  are some coefficients. 

As to equation (11), it can also be presented as an 
equation with a known solution. To be exact, it is 
transformed to the form 
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for which, according to [7], a general solution can be written 
down as [6] 
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where 3C
 
and 4C

 
are coefficients; and 
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01 kY  are first-order Bessel functions of the 

first and the second kind, respectively. 
A general solution to equation (7) as product of 

equations (11) and (12) solutions, according to (13) and 
(14), can be finally written down in the following form 
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where it is taken into account that   may be of arbitrary 
values and the subscript under the index of summation 
denotes that summing up should be done on all possible 
values of  . 

It is clear that expression (15) provides the solution to 
the initial equation (7) in the most general form and requires 
determination of coefficients 1C , 2C , 3C , 4C

 
and number 

  in order to be practically used in the calculation of 

intensity H
 
distribution. With this purpose in view it is 

necessary to use boundary conditions describing the 
behavior of intensity H  or its derivatives at the boundary 

of analyzed area: ground surface, external boundary SG  

and symmetry axis (Fig. 1). 
 
About boundary conditions 

First of all it should be pointed out that in the considered 
case the ground surface can be assumed to be the surface 
with reflective properties, which conditions the symmetry of 
intensity H

 
scalar field about this surface. It means that 

the following boundary condition is true for plane 0z  
(Fig.1) 
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H
.  

As to external boundary, there are two surfaces for it: an 
end (at a height of GZz  ) and side (at the radius of 

GR ) surfaces of the cylinder limiting the analyzed area 

(Fig. 1). Accordingly, there are two boundary conditions for 
the external boundary. 

In this case it is assumed that on the said end surface 
( GZz  ) the intensity vector tangent component of 

electromagnetic field electric component E  is equal to zero 

(vector E  is orthogonal to this surface). Then, taking into 

consideration the connection between vectors H  and E , 
assigned by equation (1) for intensity H  on the analyzed 

surface, the following boundary condition can be written 
down 
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By analogy it is assumed that on the said side surface of 
the cylinder limiting the analyzed area ( GR , Fig. 1) the 

intensity E  vector tangent component is also equal to zero 

(vector E  is orthogonal to this surface). Then, taking into 
consideration (1), the following boundary condition can be 
written down for the considered surface 
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Speaking about boundary condition on symmetry axis 
0 , as 0)0(1 J  and )0(1Y  [7], its application in the 

considered case for specification of constants being part of 
(15) is not directly possible. So, it is necessary to determine 
boundary conditions at minimally possible approximation to 
the axis (“isolated axis”). It is discussed later. 

 
Use of boundary condition for ground surface 

This boundary condition is written above as relation 
(16). Substitution of intensity H , according to (15), into 

this boundary condition makes it possible to write down the 
equation 
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or (taking into account that 00sin  , and 10cos  ) 
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which can be met at 01 C . 

It allows rewriting (15) in the form 
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where there are the following designations: 32
*
3 CCC   and 

42
*
4 CCC  . 

 

Use of conditions for the external boundary of the 
analyzed area 

According to the above assumed, there are two surfaces 
for the external boundary: an end and a side surface of the 
cylinder limiting the analyzed area (Fig. 1). Accordingly, 
there are two boundary conditions (17) and (18). 

Use of condition (17) with substitution of magnetic field 
intensity H  expression into it, according to (19), provides 

the following equation 
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which can be met if it is assumed that 

  
  0sin GZ , 

whence the following relation to all   numbers (considering 
their dependence on n , hereafter they are designated as 

n ) is obtained 
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where n  = 1, 2, 3… 
 As to boundary condition (18), substitution of (19) into it, 
after appropriate transformations, makes it possible to 
obtain the following equation 
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where 0J  and 0Y  are zero-order Bessel functions of the 

first and second kind, respectively. 

 When writing (21) it was taken into account, that in 
accordance with (20), the summation in (19) is made 
according to n. 

Equation (21) can be met if it is assumed that 
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Thus, according to (22) and (20), instead of (19) it is 
possible to write down the following expression for intensity 

H  
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About boundary condition near axis z ( 0 ) 

As it is mentioned above, in the considered case it is 
impossible to directly assume any boundary condition on 
axis z when 0 . If axis z is “isolated” with a cylindrical 

surface a  (surface AB in Fig. 2), this surface can be 

used to assign the last boundary condition with the aim of 

determination of coefficient *
3C in (23) with its help. 

 
Fig. 2. Concerning determination of the boundary condition for 
“isolated axis”, when a

 
 

For this purpose it will be taken into consideration that 
on antenna DC metal surface ( ALzd  , Fig. 2) intensity 

E  vector tangent component is equal to zero )0( E , 

and the normal component (component E ), as a first 

approximation, can be assumed to be equal to some 
constant value 0E . 

It is also taken into account, that considering the small 
radius a of antenna, condition 0E  (line of force), typical 

of the symmetry axis ( 0 ) below and above the antenna 

(Fig.2), can be accepted for surfaces AD ( GA ZzL  ) 

and CB ( dz 0 ). 
Thus, for the boundary condition on surface AB ( a , 

GA ZzL  , Fig. 2) the following expression can be 

written  
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where )(zE  is the function of distribution of vector E  

normal component on surface AB, the view of which is 
represented in the right part of Fig.2. 

Function )(zE  can be expanded into Fourier series  
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Substituting this expansion into (24) and considering (23), 
after appropriate transformations a certain expression can 

be obtained for coefficient *
3C . Substitution of this 

expression into (23) makes it possible to write down the 
final desired solution to equation (7) 
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where the following is designated 
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Direct calculation showed good convergence of series in 
(25), which, depending on calculation parameter values, is 
achieved when the number of summands is about 50-100. 

Fig. 3 shows dependences of ),(  zH  obtained by 

calculation  according to (25) with 50AL  mm; 5d  mm;  

5.1a  mm; AG LR 3 ; AG LZ 3 ; 1000  H. The form 

of these dependences corresponds to the known [2] fact 
that field intensity is weaker when the distance from 
antenna is greater.  
 The approach used to obtain expression (25), due to its 
generality, can also be the base for determination of wire 
antenna electromagnetic field when boundary conditions 
are taken into account more accurately.  
 In the conclusion it should be mentioned that the known 
distribution of intensity H  also allows determining the 

distribution of antenna electromagnetic field electrical 

component (   HrotjE 01  ). In its turn, it provides the 

possibility to find the distribution of Umov-Pointing vector on 
the external boundary of the considered area. Using this 
distribution it is possible to calculate antenna radiation full 
power and antenna input impedance [2, 3].  
 
Conclusion: 
 The use of variable separation method makes it possible 
to obtain an analytical solution in the form of an infinite sum 

for Helmholtz equation with respect to azimuthal component 
of a wire antenna magnetic field intensity. 

It enables determination of such important measured 
parameters of antenna as full power of radiation and input 
impedance. 

 
a) 

 
b) 

Fig.3 Calculation dependences of intensity ),(  zH , when 

ALdz 5.0 (a) and ALdz   (b) 
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