
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2b/2013 228

Miroslav VOZNAK, Karel TOMALA, Jiri VYCHODIL, Jiri SLACHTA

VSB-Technical University of Ostrava, Czech Republic

Advanced Concept of Voice Communication Server on
Embedded Platform

Abstract. The paper deals with a design of an embedded Voice communication server which was developed within the scope of the BESIP project
(Bright Embedded Solution for IP Telephony). The project brings a modular architecture with additional functionality such as a speech quality
monitoring and a protection against security threats.The speech quality assessment is carried out in a simplified computational E-model and we
implemented our proposal into the BESIP as an optional component. In the security module. We applied a standard approach to the intrusion
detection and protection and in addition to the mentioned modules we come up with an idea of unified configuration based on the NETCONF
protocol. We implemented ntegrated the complex support of NETCONF configuration protoco into OpenWRT and our modifications were accepted
by OpenWRT community. The paper describes the inidvidual modules, their features and entire BESIP concept.

Streszczenie. W artykule przedstawiono budowę serwera komunikacji głosowej, jako część projektu BESIP. Opracowano architekturę modułową,
posiadającą dodatkowe funkcjonalności, takie jak: kontrola jakości dźwięku mowy i ochrona przed zagrożeniami zewnętrznymi. Zastosowano ideę
konfiguracji jednolitej, opartej na protokole NETCONF. Opisany został każdy z modułów, ich funkcjonalność i cały projekt BESIP. (Ulepszona
koncepcja serwera komunikacji głosowej na platformie osadzonej).

Keywords: BESIP, NETCONF protocol, OpenWRT, Speech quality, VoIP security.
Słowa kluczowe: BESIP, NETCONF, OpenWRT, jakość mowy, ochrona VoIP.

Introduction

Our intent in the BESIP project (Bright Embedded
Solution for IP Telephony) was focused on development an
open-source modular architecture of voice communication
server with additional functionalities such as speech quality
monitoring and protection from selected security threats.
The BESIP offers the prepared solution with integrated key
components, the entire system is distributed as an image or
individual packages can be installed from SVN and the
projetcs aims to be scalable solution with security and
unified configuration in mind [2].

First, we discussed existing open-source projects which
we could adopt and modified for our purposes, we took into
account several tools and applications such as OpenWRT
for good scalability and simple embedding [1], Kamailio for
reliability and high availability [2], Asterisk and Kamailio as
B2BUA (Back-to-Back User Agent) and SIP Proxy [3],
YUMA as NETCONF server [4], OpenWRT UCI (Unified
Configuration Interface) as configuration backend and
finally SNORT as an intrusion detection and protection
system [5].
 Several open-source applications were adopted and
implemented into developed modules however within the
implementation many modifications were required,
especially in the core module based on OpenWRT due to
complicated porting of applications into OpenWRT
buildroot. Our patches were verified and accepted by
OpenWRT community. The speech quality monitoring tool
was developed from scratch and implemented in Java.
BESIP can run on low-end hardware such as ARMv5/400
MHz with 32MB RAM and supports OpenWRT architecture
ARM, MIPS, MIPSEL or x86.

The most important step which had to be done was
choosing the right software distribution/platform. There was
an idea to modify Debian distribution, this is probably the
easiest way for developers. Debian includes many ports
and packages but is not suitable for embedding. A
modification of Debian, in order to be easily embedded into
small device with read-only flash, is really a difficult task
and the expected results of such work can not lead to a
source distribution. Next solution was adopting some low-
level distribution for embedding. There are several
possibilities like FreeWrt, OpenWrt, DebWrt etc. After
discussion and projects observations, OpenWrt was
selected as primary platform. OpenWrt is well-known for

great support, ticket system, relatively well documentation
and cooperation with community of developers.

Proposed Architecture and Technology Used

The BESIP architecture is depicted in Fig. 1, there are
four basic modules: Core, Security, Monitoring and PBX.
The core is divided into following parts: OpenWRT as a
build platform; NETCONF for administration of entire
system with YUMA implementation; Web GUI for user-
friendly configuration and SUBVERSION as revision control
system providing a support and better orientation for
developers.

Fig. 1. BESIP architecture

The security module is based on SNORT, SNORTSam

and IPtables [5]. In addition to this, the Kamailio rate limit
and pike module is used for defending attacks. The
monitoring module exploits a tshark package and our java
code which interprets its results and gives information about
particular speech quality. The Zabbix agent is used to report
basic states of entire system and finally the PBX module is
made from Kamailio in conjunction with Asterisk.

As for the distribution, not only individual packages are
available for download but the whole image for particular
HW used for testing of pre-released distributions such as
HW depicted in Fig. 2 can also be downloaded [7].

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2b/2013 229

Fig. 2. Suitable HW platform containing x86 Intel Atom D410 1.66
GHz, RAM 1GB/677MHz and 16GB SSD

Core Module
 The long term goal of this project is to make the BESIP
configuration independent on clients. Today, many systems
are configurable using web, ssh or telnet and each of them
offers its own semantics and configuration files. The BESIP
project aims to change this situation, using NETCONF as
defined communication and management protocol,
configuration independent syntax will be available on all
modules. The NETCONF protocol exploits a specified
mechanism for exchanging the configuration data among an
administrator and network devices. This protocol allows the
device to send and receive configuration data through XML
documents using the RPC paradigm [8]. These XML
documents are handed over the RPC calls, the RPC
request is initiated by a client that requests the configuration
data or a command to be performed on the server. While
these requests are being performed, the client is blocked
until he receives the RPC reply from NETCONF server. The
responses consist of a configuration that is complete or
partial. Another reply is a message informing us if a
command was successfully performed on the server or not.
This communication is transferred over a transport protocol
which has to be secured and to ensure an authentication
and authorization. Most probable and secure way, how to
communicate with the NETCONF server, is to use SSH2
protocol (RPC calls over SSH subsystem).

Fig. 3. NETCONF usage

 The configuration data flow, which has been defined in
BESIP, is depicted in Fig.3. The structure of configuration
data on NETCONF server in YUMA package (netconfd) is
specified by the YANG module which defines the semantics
and syntax of a management feature [9]. It provides
complex data structures which allow design any data
structures that will meet the requirements of developers.
 The configuration data are stored securely on the
NETCONF server and all requests and responses must
comply with firmly defined structure, specified by YANG
modules. Next, global database of all the configurable

parameters is required and it is ensured by NETCONF
server. The configuration parameters are inserted by the
user and stored in the NETCONF server. Consequently, the
stored configuration data are available through simple
queries. It makes the device quickly configurable, therefore
a backup or a restore of configuration can be simply and
quickly performed. The YUMA is a package which provides
tools for the network management, we ported successfully
YUMA into OpenWRT. It consists of a NETCONF client
yangcli, the NETCONF server netconfd, validation tools
yangdiff and yangdump and netconf-subsystem, which
allows us to communicate with the NETCONF server
through a SSH2 subsystem. OpenWRT uses UCI as
configuration backend, it is a group of configuration files
which can be read or modified by common UCI API. We
decided to provide a glue between NETCONF and UCI. The
NETCONF protocol is applied for BESIP configuration, the
advantage of this approach lies especially in the exact
definition of data model; possibility to call any function
through a remote procedure call; possibility of data model
editation in YANG and the independance on client.
 A RFC draft of YANG data model for interface
configuration is applied for verification of basic proposed
functionalities [9]. It enables to set up IP parameters of
general network interfaces in any system and forms
fundamentals for a development of individual YANG
modules which have to be defined for UCI configurations.
We combine several applications and packages for overall
functionality of NETCONF. The library libnetconf, which has
been developed in CESNET (Czech Educational and
Science Network association) as an open-source project
since 2009, is a key part of our implementation [10].
 The NETCONF protocol exploits a specified mechanism
for OpenWrt is a platform for embedded equipments and
the primary goal is to provide a suitable environment for
small routers with minimum requirements on processor,
flash and RAM. Any ported application into OpenWRT has
to comply with mentioned requirements above and its code
is rigorously checked by openWRT community before is
accepted. We adopted OpenWRT as a platform for creation
of images with clear functionalities and versioning, our
generated images can be used as a firmware for various
devices and as a disk image for KVM or VMWARE
virtualization machines.
 Although the implementation is mostly complicated due
to a cross compilation, the image generation for embedded
equipment is very well parameterized and we exploit this
feature in our autobuild script supporting following targets:
asuswl500gp-brcm47xx; besiphw1-x86 and tplink1043nd-
ar71xx
 Each of these targets represents a set of variables
defining parameters for an image generation of particular
hardware. Diversity of configuration interfaces is a
remarkable feature of most applications and libraries based
on GNU/Linux kernels. Each application or tool is mostly
configured in different way, this issue, how to configure
more applications in one configuration tool, is solved in
OpenWRT.
 Unified Configuration Interface is configuration interface
(UCI) in OpenWRT, all packages supporting this way of
configuration are able to read configuration data form UCI
and create their configuration files from these data. The
advantage lies in independence of individual
implementation, UCI provides an interlayer between user
and application which brings a simplification of configuration
for users and the unified API for applications.
 The UCI only defines a format of configuration directives
and access to them but no their exact content or relation
each other. It depends on user and typically, if users modify

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2b/2013 230

a name of network interface, the next libraries fail until the
modification is performed in all locations where is
necessary.

NETCONF server

YIN/YANG
Configuration UCI

model

NETCONF
configuration

database

UCI

/etc/config/...

CLI

NC handler

NC client

UCI mapping to
YANG 1:1

/etc/init.d/service

UCI config parser
for additional

services

/etc/...

Fig. 4. Concept of NETCONF and UCI interoperability in
OpenWRT

 In contrast to UCI, the NETCONF and YANG embody
exactly defined features. Each configuration directive has to
be defined and described in YANG model. The relations
among modules and options are described in YANG as well
and UCI ensures only checking of data syntax. Our aim is to
define and develop YANG models for individual UCI
configurations, next to this to specify all dependencies and
to determine ranges of possible values, e.g. in configuration
of firewall we are able to force that the name of network
interface corresponds to the name of module „interfaces“.
Important advantage of our approach is the fact, that the
verification is performed before data processing by
application, this way the complex procedures in applications
are detached from input data verification. Data are validated
at level of NETCONF and end-user can set only parameters
and values which are defined within YANG schema, the
situation is depicted in Fig. 4.
 Our approach solves two significant issues, the first one
is an imperfection and variability of current UCI
documentation, nowadays an edited WIKI but in future
YANG definitions enabling an automatic generation of web
content, the second issue is a large number of scripts
ensuring parsing and a formation of configurations from
universal UCI files. The YANG model exactly defines
configuration structure which enables detach substantial
part of code from current applications. If users change UCI
file, the content will be automatically validated within YANG
schema and users notified on failures.
 UCI enables a description of configurations in
OpenWRT and implementation can be realized by means:
script shell function, C library libuci or UCI command line.
The most of packages have in use the script shell functions
to load options and consequently to generate configuration
files for individual packages.

PBX Module
 The PBX module is key part of the BESIP project. It
operates as SIP proxy or SIP B2BUA, depending on
configuration, and ensures a call routing. Asterisk is used

for call manipulation and for the PBX functions. Kamailio is
used for the proxying SIP requests, the traffic normalization
and for the security [5]. There are always two factors when
developing VoIP solution, the first one is high availability
and reliability, the second one is an issue of advanced
functions. Many developers try to find a compromise, we
have implemented both and our BESIP is able to adapt to
the users requirements. More complex system can handle
many PBX functions such as a call recording or an
interactive voice response but due to the bigger complexity,
it is more susceptible to fault. On the opposite side, pure
SIP proxy is easier software which can perform call routing,
more fault tolerant but it is more difficult to use the
advanced PBX functions [11]. The BESIP offers users an
option to choose how system will work. From this reason,
the BESIP includes both Kamailio and Asterisk. Today, only
one of these engines can be configured but in future, both
engines will work together and will be configured by
common NETCONF server. Kamailio will route requests
even if Asterisk will be out of order, only advanced PBX
functions will be unavailable in such situation.
 Asterisk-GUI is very flexible web solution of Asterisk
management, even if it is not NETCONF based, Asterisk-
GUI was added to the first BESIP release. The reason was
that at this time, there was not completed an interoperability
between NETCONF and Asterisk. It is available in the next
release and the implementation involved very complex task.
The users can decide to use easy Asterisk-GUI for PBX
setup at initial version of BESIP. Nevertheless in future
version we would like to remove the Asterisk-GUI package
from BESIP image and the configuration will be accessible
only through new developed NETCONF based
management. During implementation, we solved several
technical issues concerning Asterisk-GUI in OpenWRT
environment and finally we made a decision on disuse
Asterisk-GUI in BESIP roadmap.
 SIP Proxy Kamailio is the second tool in PBX module,
Kamailio configuration is well-known due to high complexity,
our effort was focused on simplification the configuration in
BESIP. The original Kamailio configuration is a script which
is initiated with every SIP request. A rewriting of all
configuration file into UCI is not possible nevertheless in
recent version of Kamailio is enabled a conditional
compilation of the code and a definition of global variables.
It significantly simplifies situation in case of configuration
modification therefore we decided to divide Kamailio script
file into several logical parts. Global definition of variables is
carried out at beginning of running script and afterwards the
remaining part of configuration is loaded. We are able to set
in UCI the basic Kamailio directives, such as option whether
BESIP works as REGISTRAR server, if supports
authentication, NAT, if is used as Media or RTP Proxy, etc.
Our init script ensures proper distribution of parameters
form UCI into Kamailio configuration
 An accounting is important part of every PBX and the
same way as in many systems the accounting is divided
into two separate parts. The individual calls are processed
in PBX modeule and a call detail record (CDR) is generated
to every performed call, these CDRs are stored in text file or
a repository. The next part of the accounting is an
application which enables to perform statistics over stored
data, it means to search and display in accordance with
requested criteria. This is a conventional scenario, classical
approach of many accounting applications and highly
reliable because the PBX function is not affected by
accounting and even if there is problem with accounting
software, PBX still operates properly. However there is one
big disadvantage, during a call setup, the PBX knows
nothing about call price and cannot provide an authorization

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2b/2013 231

which is well-known from pre-paid services offered by
mobile operators. Having this information, we are able to
perform more checks and operations at the call setup level.
For example, we can look up into user credit and do not
permit a call if the credit is depleted or low. Similar to this,
we can authorize every call against a threshold, such as
maximal price per minute/trunk/global. These thresholds
can be pre-set or dynamically changed according to the
actual user credit. Having this information, the PBX will be
safer and resistant against attacks aimed at an exploitation
of the PBX [5].

Security Module
 The security module is very important part of BESIP and
all the time, it was considered to make the developed
system as secure as possible. Next to this, entire system
has to be fault-tolerant, monitored and protected from
attacks. It means that if the device is under attack, only
attacker has to be blocked, not entire system or other users.
If there is some security incident, BESIP immediately solves
the situation and notifies this event in detailed report to the
administrator.
 Attacks against the embedded systems are more
dangerous due to their relatively lower performance which
makes the attacks more efficient. We chose an IPS system,
consisting of three applications. The core of the entire IPS
solution is IDS system Snort which detects malicious
activity in the network. The detection is based on signatures
or detection of anomalies. The whole IDS system is
modular, consisting of the following components: Packet
decode capturing packets from network interfaces, Pre–
processor preparing packets before the processing;
Detection engine; Logging system and finally Output
modules or plugins for adding another features.
 The second part a SnortSam application operates on
the client–server model. It allows Snort to dynamically
intervene into IPtables rules. To ensure its proper operation,
we need to first patch our Snort installation with a SnortSam
plugin. The client communicates with the Snort’s sensor,
sends commands to the server (when incident has been
detected). The server listens on port 898, applying
information from clients to IPtables rules. SnortSam
messages are transferred as encrypted, based on
preshared passwords which must be same on server and
on client A whitelist of non–blockable IP addresses is also
available.
 The detected traffic is then blocked for some time. Once
the attack is over and timed out, the blocked IP is allowed to
communicate again. Thus, only malicious traffic that poses
a threat to our server is blocked. The thirds part of Security
modele is created by IPtables, the tool represents an open–
source firewall for Linux–based operation systems. It is
used to block malicious traffic on a server. In our case,
running at the same physical device as a VoIP server.
 The attack are recognized and processed by SNORT
rules, the source IP address is automatically sent into
firewall by SNORTSam and the intruder’s IP is blocked.
This is very flexible, reliable and effective implementation.
Dropping attack based on IP directly in the Linux kernel is
much more efficient than to check messages on the
application level. Only first messages are going to SNORT
filter. When SNORT identifies a suspicious traffic, next
messages from the same IP are blocked. In next BESIP
releases, we are going to to implement ipqbdb mechanism
which will be even more self-defending. It is based on IP
denoting.
 If more soft faults appear from some IP, it is blocked at
the IPTABLES level, this approach can effectively block
incorrectly configured clients and servers. For example, if

client sends REGISTER with proper credentials, it is not
obviously security attack but the client attempt to register
again and again, with every registration requires computing
sources at SIP REGISTRAR server. Such attempts can be
denoted and blocked for a time interval. Security
precautions against these attacks include Snort rules
tracking the number of messages sent to the SIP server
from a particular source address. The blocking rules were
similar in most cases, like this Snort rule for blocking
unwanted register flood.

alert udp $EXTERNAL_NET any ->
$SIP_PROXY $SIP_PORT (msg:"SIP
DoS attempt(registerflood)"; content:"REGISTER sip";
detection_filter:track by_src, count 50, seconds 5;
classtype:misc-attack; sid:1000001; rev:1; fwsam:src,
10min;)

 Administrators can use Zabbix or NAGIOS agent inside
BESIP to gather all information directly into their monitoring
system. The monitoring is very important part of the security
module and BESIP team was already focused on the issue
in early design [1]. Partially, BESIP is resistant to some kind
of DoS attacks. It depends on hardware used. If hardware is
strong enough to detect some security incidents on
application level, the source IP is immediately dropped. But
for weak hardware it can be serious problem. In such case,
it is better to stop DoS attacks before it reaches BESIP. For
example, SNORT on a dedicated machine will be much
more flexible than if is an integral part of VoIP system.
Therefore, we recommend to use an external IPS system to
make VoIP service robust and secure. Nevertheless BESIP
includes own IPS/IDS system. The efficiency of our security
module was verified in test-bed and the achieved results in
REGISTER flood are depicted in Fig. 5.

Fig. 5. Attack effectivity based on REGISTER flood.

 The CPU load was monitored during trivial SIP attacks
and in order to generate these attacks, we used sipp
generator, the CPU indicated heavy load. On the other
hand, the line SSI (Snort, SnortSam, IPtables) represents
the response in case of active security module in BESIP.
The dependence in Fig. 5 clearly proves the ability of
security module to mitigate the performed attacks.

Monitoring Module
 The overall solution of the monitoring system consists of
several different open source components and also of the
part that was directly developed for this purpose to meet the
defined requirements. At first we deal with the application of
the computational E-model, simplified for the purpose of
implementation. The computational model consists of
various mathematical operations over all parameters of the
transmission system [12, 13, 15]. The computation itself can

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2b/2013 232

be split into several elements and is expressed by the
following equation (1):

(1)
o s d e effR R I I I A    

where R0 represents the signal-to-noise ratio and includes
all types of noise, such noises caused by the device’s
electrical circuit and noises arisen on the wiring. The
impairment factor IS comprises all possible impairments
combinations that appear more or less simultaneously with
a useful voice signal. The factor Id represents all
impairments which are caused by different combinations of
delays and the factor Ie-eff comprises impairments caused by
using a particular voice codec, occurrence of packet loss
and its resistance against losses. Specific impairment factor
values for codec operation under random packet-loss have
formerly been treated using tabulated, packet-loss
dependent Ie values. Now, the packet-loss robustness
Factor Bpl is defined as a codec-specific value. The packet-
loss dependent effective equipment impairment factor Ie-eff is
derived using the codec-specific value for the equipment
impairment factor at zero packet-loss Ie and the packet-loss
robustness factor Bpl, both listed in Appendix I of ITU-T
G.113 for several codecs [18]. With the packet-loss
probability Ppl, Ie-eff is calculated using the equation (2).

(2)  95 pl
e eff e e

pl
pl

P
I I I

P
B

BurstR

    


 BurstR is the so-called burst ratio, defined as ratio
between “Average length of observed bursts in an arrival
sequence“ and “Average length of bursts expected for the
network under random loss“. Finally, parameter A slightly
adjusts the final quality depending on user’s concentration.
The value of conventional (wire-bound) communication
system is A=0, mobility by cellular networks in a building
A=5, mobility in a geographical area or moving in a vehicle
A=10 and access to hard-to-reach locations, e.g. via multi-
hop satellite connections A=20. It should be noted that the
above values are only provisional. The use of factor A and
its selected value in a specific application is up to the
planner's decision. Additional background information on
the advantages of factor A can be found in Appendix II to
ITU-T G.113.
 The simplified E-model takes into account only effects
from codec, packet loss (random packet loss) and end-to-
end delay. Fig. 6 illustrates the situation which corresponds
to relation (4).

Factor Id

Factor Ie‐ef

R ‐‐‐> MOS

MOS

Delay

Codec

Loss
Ie‐ef

Id

 Fig. 6 E-model in simplified version

 As for the codec, it is simply identified at the receiving
side. The same applies to the delay. We applied a linear
regression to results gained in AT&T laboratories [14] and
derived relation (3) which provides accurate results, with
regression quality r=0.99 ranging from 0 to 400 ms.

(3)
d

0.0267 T T 175ms
I

0.1194 T 15.876 175ms T 400ms

 
     

 Parameters R0, IS and A are replaced by constants, with
their values stated in recommendation ITU-T G.107. The
original relation (1) has been modified as follows (4):

(4) 94.7688 1.4136 0d e effR I I     

 Parameter Ie-eff is computed in relation (2). Where the
packet loss distribution is unknown, the value of the packet
loss is assumed as random and BurstR = 1 and it results in
the following simplification. Parameter Ie is fully taken over
from recommendation ITU-T G.113 where its values for the
most used codecs are listed [13].
 Finally, the computed R-factor is converted to MOS
value. For this purpose, relation (5) was adopted [15]. MOS
values > 100 can be achieved only provided a wide-band
codec is used.

(5) 1MOS 

for 6.5R 
61 0.035 (60) (100) 7 10MOS R R R R          

 for 6.5 100R 
4.5MOS 

 or 100R 

Implementation
 System structure is depicted in Fig. 7. The system itself
consists of three logical components, which are – web
interface that serves the administrators (Web GUI), part of
the script (Scripts) that controls the obtaining the
information necessary to compute the speech quality in the
simplified E-model. Last component is part of the Quality
Monitor, which contains the logic for calculation itself and
performs processing of data obtained by scripts. In the
overview SQLite3 database, which is used to store the
results.

Web GUI

Quality Monitor

Scripts

... ...

RTP Packets

SQLite DB

Fig. 7 Overview of the logical structure of VQM

 The developed application offers the comfort of
management in a web application, the developed interface

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2b/2013 233

aggregates required functions. Web interface is the main
part of user interaction with a monitoring tool. Monitoring
tool is turned off in the default configuration and can be
enabled using the intuitive main interface of BESIP any
time. This part of the monitoring tools is also used as a
mean to display the measured and computed results.
Structure of the presented data is as follows: Time, Source
IP, Destination IP, MOS and used Codec. An example of
user interface is shown in Fig. 8.

Fig. 8 Sample of web GUI of monitoring speech quality

 The web interface is written entirely in PHP scripting
language in order to enable starting or stopping the
monitoring system through the OpenWRT shell as it
depends on shell applications such as tshark (a small
terminal-based network analyzer). Scripts are launched
through the web interface of the monitoring tool enabling
the monitoring itself. In practice, this means starting the
network traffic capture with the tshark tool with the RTP
filter activated. The usage of the RTP filter makes working
with RTP streams much easier as these streams contain
some important statistical data (packet loss, jitter) and other
important information (source/destination IP, codec)
necessary to calculate the speech quality in the E-model.
 The status indicator is located at the top of the GUI and
indicates whether the monitoring is activated in BESIP
(Monitoring is running…) or is currently turned off.

Conclusion
 The contribution of our work is entire BESIP concept
and its implementation. As we have mentioned, BESIP
consists of several components which are distributed under
GPL as an open-source solution. A few of them have been
fully adopted such as the components in Security and PBX
modules, some of them modified, concerning the CORE
module and finally we have developed own tool for Speech
quality assessment. The contribution of our work is not only
few hundreds of hours spent on the development, on the
coding BESIP system, we bring a new idea of the unified
configuration management, with unified CLI syntax which
enables to configure different systems, Asterisk and
Kamailio in our case. We perceive that we need to solve a
lot of issues, After several pre-releases, the first stable
version 1.0 was released in November 2011, the current
version 1.2 is on-line available as open-source [6]. The
BESIP is distributed as a functional image for x86 platform

but is possible to run it on Vmware or KVM. Configuration is
available through web-browser or SSH client.
 As for future work, we develop a new release 2.0 which
will be based on NETCONF with one API to configure entire
system. The CLI and NETCONF configuration will be
independent on hardware and version. To export
configuration from one box and to import it to the next one
will be simple task. Users could modify only one
configuration file to manage entire box. After this step, all
internals of configuration will be hidden as was mentioned
in introduction. Entire BESIP is freely available under GPL
license and binary images from nightly autobild can be
downloaded [6].

The research leading to these results has received funding
from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no.
218086.

REFERENCES

[1] Surhone L . , Tennoe M. , Henssonow M. , Susan F.,
OpenWRT, Betascript Publishing, (2011)

[2] Macura L . , Voznak M. , Toma la K . , S lach ta J . ,
Embedded Multiplatform SIP Server Solution, In Proc. 35th
International Conference on Telecommunication and Signal
Processing, Prague (2012), 263-266

[3] Macura L . , Voznak M. , Kamailio syntax generator and
configuration file parser, In Proc. 15th WSEAS International
Conference on Computers, Corfu (2011), 308-312

[4] Enns R. et al., Network Configuration Protocol (NETCONF),
IETF RFC 6241 (2011)

[5] Voznak M. , Sa fa r i k , J . , DoS attacks targeting SIP server
and improvements of robustness, International Journal of
Mathematics and Computers in Simulation, Volume 6 (2012),
Issue 1, 177-184

[6] Source code of BESIP Project, LipTel Team, 2011. Available:
http://liptel.vsb.cz/mirror/besip/nightly

[7] Cu tu l i G . , Mumo lo E . , Tessaro t to M. ,An XML-based
virtual machine for distributed computing in a For/Join
framework, In Proc. 24th Int. Conf. Information Technology
Interface, Cavtat, Croatia (2002), 471-477

[8] Ch isho lm S . , T rev ino H . ,NETCONF Event Notifications,
IETF RFC 5277 (2008)

[9] Scot t M . , B jo rk lund M. , YANG Module for NETCONF
Monitoring, IETF RFC 6022 (2010)

[10] Libnetconf, NETCONF library in C. Available:
http://code.google.com/p/libnetconf

[11] Voznak M. , Advanced implementation of IP telephony at
Czech universities, WSEAS Transactions on Communications,
Volume 9 (2010), Issue 10, 679-693

[12] Voznak M. , E-model modification for case of cascade
codecs arrangement, International Journal of Mathematical
Models and Methods in Applied Sciences, Volume 5 (2011),
Issue 8, 1439-1447

[13] Transmission impairments due to speech processing, ITU-T
Recommendation G.113, Geneva (2007)

[14] Co le G. , Rosenb lu th , Voice over IP performance
monitoring, ACM SIGCOMM Computer Communication, New
York (2001)

[15] The E-model: A computational model for use in transmission
planning, ITU-T Recommendation G.107, Geneva (2011)

Authors: Assoc. prof. Miroslav Voznak, Ph.D., MSc. Karel Tomala,
MSc. Jiri Vychodil, Jiri Slachta, Technical University of Ostrava,
Department of Telecommunications, 17. listopadu 15/2172, 708 33
Ostrava-Poruba, Czech Republic, E-mail: voznak@ieee.org,
karel.tomala@vsb.cz, jiri.vychodil@vsb.cz, jiri.slachta@gmail.com.

