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Finding a Crack and Determining Depth in a Material 
 
 

Abstract. The purpose of this paper is to find geometry of a crack (length and depth) in a conductive plate, on the basis of non-destructive testing 
with eddy currents. The position of a crack can be determined by taking into consideration the change in the magnetic density between the 
measured points. The depth is determined with the use of FEM model. The calculated test case points to an accurate determination. 
 
Streszczenie. W artykule opisano metodę wyznaczania rozmiarów pęknięć w płytkach przewodzących, na podstawie testów z wykorzystaniem 
prądów wirowych, nieniszczących elementu. Metoda wykorzystuje wpływ pęknięć na zmianę gęstości pola w badanym rejonie. W analizie posłużono 
się metodą elementów skończonych. Otrzymane wyniki potwierdzają skuteczność działania. (Lokalizacja i analiza rozmiarów pęknięć w 
materiale przewodzącym). 
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Introduction 

The method of identifying and searching for a crack, 
with a non-destructive testing, is all more widespread and 
important [1,2,3,4]. Non-destructive testing is often used, 
based on considering the impact of eddy currents and the 
usage of different excitation coils and sensors for 
measuring magnetic flux density [5,6,7]. 

Several devices for non-destructive testing have 
additional programs for displaying measurement results, 
within which a graphical display of the measured results 
helps to determine the position of a crack within a material 
[8]. 

This paper describes a procedure that determines a 
crack’s position on the basis of measurements. The input 
data is represented by the measured values for magnetic 
flux density at the centre of an excitation coil, supplied with 
an alternating current. Our intention was to also determine a 
crack’s depth. This meant dealing with an inverse problem. 
Some authors use analytical methods that help to solve the 
problem [9,10,11]. 

Sometimes numerical methods are used to achieve 
better results, which are further used to analyse certain 
circumstances within those tested materials close to the 
excitation coils [12]. 

Our strategy is based over two steps. Firstly, calculation 
of the crack’s length using the derivatives at each measured 
point towards the neighbouring measuring points. Secondly, 
the determination of crack depth using a FEM model, 
combined with an iterative procedure. 

A program that defines a position and depth of a crack, 
in a material, is developed and presented in the paper.  
 
Measurements 

The basis for geometry of a test case is geometry of the 
Team Workshop problem No. 8. 

The test case is an aluminium plate with a crack, above 
which is an excitation coil. Plate with a crack and coil with 
marked dimensions are shown in Figure 1. 
 

 
Fig.1. Plate with crack and coil. 

 

 Plate thickness is c = 30 mm and dimensions a = 330 
mm and b = 285 mm. The crack is in the middle of a plate. 
The position of a crack is determined with the help of a coil, 
which is placed at h = 7.8 mm above the plate. The coil has 
566 turns, inner diameter Di = 36.8 mm, outside diameter 
Do = 53 mm and height hc = 56 mm. The coil is supplied 
with a sinusoidal current of 1 A and frequency of 500 Hz. 
The crack has a depth d = 10 mm, length l = 40 mm and 
width w = 0.5 mm. The measuring is only conducted with a 
z component (magnitude) of magnetic flux density in an 
axle of the coil at 0.5 mm above the plate. 
 Values obtained through measurements are shown in 
Figure 2. 
 

 
Fig.2. Measured values above the crack size d = 10 mm and w = 
0.5 mm. 
 
Determining a crack position and length 
 The measured Bz are exemplified with surface, whose 
shape is dependent from crack parameters (length, depth 
and width). 
 The lower eddy current occur in the area of the crack, 
therefore the density of magnetic flux increases. 
 Study of influence of depth and width of crack on 
magnetic density over the plate is made with use of finite 
element method (FEM) model. Cedrat Flux 3D software is 
used for simulations. Model for simulations is shown in 
Figure 3.  
 Absolute value of magnetic density z-component, above 
the plate, has a shape of the surface that is shown in Figure 
4. The shape of a surface changes in relation to changes of 
length, width and depth of a crack. Presented in the Figure 
4 is a left half of the picture (from y = 0 to y = 10 mm) where 
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length of a crack is 40 mm, width of a crack is 0.5 mm and 
depth of a crack is 10 mm, as well as the right half of the 
picture (from y = -10 mm to y = 0) where length of a crack is 
40 mm, width of a crack is 0.5 mm and depth of a crack is 5 
mm. 
 

 
Fig.3. Flux 3D model for simulations 
 

 
Fig.4. Bz for different positions of coil - length of crack 40 mm, width 
of crack 0.5 mm, depth of crack 5 mm (-10 mm ≤ y ≤ 0) and 10 mm 
(0 ≤ y ≤ 10 mm) 
 

 That way the crack position is determined by 
considering the change in density – derivatives on the plane 
in measured points. In every measured point, the 
derivatives are calculated in the direction of neighbouring 
measured points, and there are eight directions.  
 The derivatives are calculated as differential quotients, 
which are expressed as angles. The angles are obtained 
through an Equation (1).  
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 Obtained angles can be 0, positive or negative. If the 
magnetic density in neighbouring measured point does not 
change, then the angle equals 0. If it increased then the 
angle is positive and if it decreased the angle is negative. 
Directions of derivatives within some points are shown in 
Figure 5. 
 

 
Fig.5. Directions of derivatives in some points 
 

 For every point, there are eight derivative values in the 
direction of eight neighbouring measured points. Due to 
clarity in Figure 5, not all derivative directions into an 
individual point are shown.  
 In order to determine a crack, it is sufficient enough to 
know the maximum and minimum angle respectively 
derivative of the magnetic field density.  
 The minimum and maximum angles are presented in 
Figure 6. 
 

 
Fig.6. Minimum and maximum angle 
 

 The crack in the material occurs when the minimum 
angle is smaller than zero and maximum angle 
approximately equal to zero (points 4 and 5 in Figure 5 and 
in Table 1) or when the minimum angle is smaller than zero 
and maximum angle is smaller than zero. During the 
calculation, a certain tolerance (value smaller than 
tolerance is considered as 0 – tolerance is between 1 and 2 
degrees) is taken into consideration since the plane of the 
measured values is not completely smooth. 
 
Table 1. Determining a crack in points in Figure 5 depending on 
φmin and φmax 
Point 1 2 3 4 5 
φmin ≈ 0 ≈ 0 < 0 < 0 < 0 
φmax ≈ 0 > 0 > 0 ≈ 0 ≈ 0 
Crack No No No Yes Yes 
 
 Results obtained for the test example are shown in the 
Figure 7. 
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Fig.7. Determined position of a crack 
 
 Based on a condition that φmin < 0 and φmax ≈ 0 or φmin < 
0 and φmax < 0 the course of a crack is correctly determined. 
The obtained length of the crack in the Figure 7 is 39.4 mm, 
which is correct value. The obtained width of the crack in 
the Figure 7 is 3.4 mm, which is not the width of a real 
crack. In order to obtain the approximately correct crack 
width, the measured Bz should have started to decrease on 
the border of the crack, but it started to decrease some 
measured points away from the crack’s border. 
 Based on a determined position of a crack, the FEM 
model is made with an appropriate mesh of finite elements.  
The mesh is denser around the crack, while the areas away 
from the crack may have increased number of finite 
elements. In the area of the crack and partially near the 
crack, a mesh is made in layers that are parallel with a 
crack. That way the thickness of a mesh can be easily 
changed by moving the layer knots in FEM model where 
another generation of FEM mesh is not necessary. Finite 
elements in the shape of a prism are used, of which the 
basic plains lie in a flat surface parallel with a plain of the 
plate. In such way, with the change of the z-coordinate of 
an individual surface in the finite element mesh, the depth 
of a crack can be changed. Shown in Figure 8 is a 
schematic display of the way the finite element mesh, in the 
area of the crack, is generated. In case it comes to large 
changes of d and w, the surrounding layers of finite element 
mesh are adjusted around the z and y axle. 
 

 
Fig.8. Schematic display of the way the finite elements mesh is 
generated 
 
Determining depth of a crack 
 Depth (d) and width (w) influence the course of density. 
The course of density above the crack can be more or less 
curved. The difference is mainly above and in the vicinity of 
a crack. The knowledge of this course, which is obtained 
from the measurement, makes it possible to determine 
depth d.  
 A program has been developed that connects Finite 
elements model with an iterative method, which makes it 

possible to detect a crack. The A – V, A formulation is 
utilized where in a conducted region, a magnetic vector 
potential A and electric scalar potential V are used and in 
non-conducting region, only the magnetic vector potential A 
is used [9]. 
 Complex equations are used due to a harmonic 
excitation of current and the linear features of a material. 
 Differential equations (2) and (3) are solved in 
conductive region. 
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 Differential equation (4) is solved in non-conducting 
area. 
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 Je is excitation current. Eddy currents are not 
considered in an area of the coil. 
 That way the system is solved, where coefficients are 
complex numbers written with a matrix equation (5). 
 

(5)        S P R  

 
 S is a system matrix that is dependant on the geometry 
and material properties, P is a vector of potentials and R is 
a vector of excitation. 
 In relationship to the geometry of a crack, the FEM 
calculation is conducted for every iteration of an algorithm, 
only in few typical points. The points are chosen from the 
top and next to a crack, in a transverse direction in relation 
to the crack. If the crack is uniform, it is enough to choose 
only those points transversely in the middle of the crack. If 
not, the points on the greater number of lines, transversely 
to the crack, must be chosen. As a result, an average value 
of depth of a crack is obtained.  
 Appropriate choice of number of points considerably 
shortens the calculation time and does not impact on the 
accuracy of the calculation. 
 Width is set as a constant value and depth is calculated 
on the basis of typical points (for the test case we used nine 
points). The calculation of the new depth for each point is 
made with Equation (6). Use of Equation (6) leads us 
iteratively to the solution. 
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 And new depth is calculated with Equation (7). 
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 Bi are calculated values in individual point, Bmi 
measured values in individual point and n is number of 
chosen typical points. The calculation is made for three 
different crack widths and the sum of squares of differences 
between measured and calculated values is calculated with 
Equation (8). 
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 The entire calculation procedure is shown through an 
algorithm in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9. Calculation algorithm 
 
k is the iteration number and ε is the difference between the 
two calculated depths, which must be reached. 
 
Results 
 Test calculation was made for three different crack 
widths, which were 0.5, 1 and 1.5 mm. The iterative 
procedure was made until the difference between the two 
calculated values of d was smaller than 10-6 m. 
 Calculation results are presented in the Table 2. 

Table 2. Calculated depth for different widths 
w (mm) d (mm) iterations sum 
0.5 7.1995 26 1.22812·10-5 
1 8.7529 13 7.826·10-6 
1.5 8.6522 12 1.229654·10-5 
 
 On the basis of results from Table 2, it can be seen that 
the sum is the smallest, for the crack width 1 mm. It can be 
concluded that the crack depth is 8.75 mm. For more exact 
solution, more calculations for crack widths around 1 mm 
should be done. On computers, which have processors with 
multiple cores, the calculations for different widths can be 
done parallel (as separate exe files or as parallel 
processing). 
 
Conclusions 
 The length of the found crack is 39.4 mm. That is correct 
solution. The found depth is 8.75 mm, which deviates 
12.5% from the actual depth of 10 mm. The problem is 
poorly conditional in a sense of a search of the crack width: 
therefore the crack width of 1 mm is only estimation. To get 
more exact value, further calculations with different crack 
widths must be conducted. In that case the calculated crack 
depth will remain almost the same. Very thin crack lead us 
to the very small finite elements in the crack area, which is 
not possible to model. 
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