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A hybrid algorithm combining auto-encoder network with 
Sparse Bayesian Regression optimized by Artificial Bee Colony 

for short-term Wind Power Forecasting  
 
 

Abstract. To forecast the short-term wind power precisely, this paper proposes a hybrid strategy which consists of a nonlinear dimensionality 
reduction component by auto-encoder network and a forecasting component based on Sparse Bayesian Regression optimized by Artificial Bee 
Colony Optimization. The proposed model can predict wind power curve per hour with a lead time of 3hours. Finally, an experiment is conducted to 
test the effectiveness of the forecasting model based on the detailed data from a wind farm in China.  
 
Streszczenie. W artykule zaproponowano hybrydową metodę przewidywania krzywej prędkości wiatru w okresie kolejnej godziny. Algorytm bazuje 
na nieliniowej redukcji wymiarowości przez sieć auto-enkoderową (sztuczną sieć neuronową) oraz na elemencie przewidującym, opartym na 
rzadkiej regresji Bayesa (ang. Sparse bayesian Regression) zoptymalizowanej metodą sztucznej koloni pszczół. (Krótkoterminowe przewidywanie 
energii wiatru przez algorytm hybrydowy – sieć auto-enkoderowa oraz regresja Bayesa SBR zoptymalizowana metodą sztucznej kolonii 
pszczół). 
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(ABC). 
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1. Introduction 

Currently, since the energy and environmental problem 
has become so urgent to influence the development of 
human survival and social economy, it is of great 
importance to guarantee the realization of social and 
economic sustainable development by supplying secure 
and stable energy and utilizing the high efficiency and clean 
energy [1]. Wind power, as one kind of clean and renewable 
energy sources, has been gradually concerned around the 
world. As a major energy consumer, China has paid 
cosmopolitan attention to adjusting the energy structure and 
alleviating the environmental pollution. Besides, it makes 
great efforts to the utility of renewable energy, including 
wind power, in particular of its development and utilization 
[2]. 

With characters like strong randomness and long-term 
inaccurate prediction, wind power confronts special difficulty 
in power quality and power system operation. Good 
prediction methods are urgently required to resolve the 
relevant problems when wind energy is integrated into the 
power system. 

Many researchers have taken the factors influencing 
wind power into consideration, and classified prediction 
methods into two groups. One is based on analysis of 
historical wind power data and the other is on the basis of 
numerical weather prediction (NWP) data [3]. The prediction 
method has been enhanced from traditional statistical 
methods to the artificial intelligence methods, especially the 
hybrid methods, which attract more and more researchers’ 
attention [4, 5]. Taking advantage of the simplest statistical 
models, the persistence approach has been proven to be a 
useful approximation for short-term wind power forecasting. 
They surpass many other models and have been widely 
used in practice despite the unstable forecasting efficiency 
[5]. For the recent years, the artificial intelligence 
methodologies have appropriately been applied to many 
areas, such as artificial neural networks (ANN) [6-7], 
support vector machine [8] and some hybrid algorithms [9-
11]. A multi-layer feed-forward neural network (MFNN) is 
proposed to forecast wind power and speed in time-scales 
which can vary from a few minutes to an hour and is trained 
by simultaneous perturbation stochastic approximation 
(SPSA) algorithm [12]. By considering more factors as the 

inputs for the model, it would get more accurate results. 
Paper [13] proposes a support vector machine (SVM)-
based model for wind power forecasting, which firstly 
predicts the wind speed, and then predicts the wind power 
through using the power-wind speed characteristics of the 
wind turbine generators. They exert exhaustive searches to 
find the optimal parameters of SVM. The search process is 
time-consuming and can be improved by using some 
algorithms. For the past few years, there are some optimal 
algorithms which are used to search the best parameters of 
a model, such as genetic algorithm (GA) [14], differential 
evolution (DE) algorithm [15], Particle Swarm Optimization 
(PSO) [16] and so on. In this paper, artificial bee colony 
(ABC) algorithm is selected to find the optimal parameters 
of the model based on foraging behavior of honey bees. 
The selected algorithm is more effective compared with 
other existing algorithms including GA, PSO, differential 
evolution algorithm (DE) on many benchmark functions [17-
19].  

Even though the existing methods have gotten definitely 
improved over the years, more accurate forecast methods 
are still under great demand. In this paper, a new wind 
power forecasting strategy is proposed and its efficiency is 
exhibited by several experiments composed of auto-
encoder network, Artificial Bee Colony and Sparse 
Bayesian Regression. Various factors which affect the wind 
power and the relevant historical data are taken as the 
inputs to make predictable process more precise.  As a 
result, the auto-encoder network solves many issues and 
reduces the input dimensions. It can filter out its irrelevant 
and redundant features and select the most prominent 
candidate inputs for the proposed forecasting model. 
Besides, we utilize the Sparse Bayesian Regression (SBR) 
model whose parameters are optimized by the artificial bee 
colony to predict the power. By incorporating Gaussian 
process, Bayesian-theorem and automatic relevance 
determination prior, the method can achieve sparsity in a 
probabilistic Bayesian learning framework. The SBR 
algorithm can achieve an accurate prediction which utilizes 
much fewer functions than the comparable SVM algorithm 
and offer a number of additional advantages [20-22]. The 
model usually selects parameters randomly in a given 
range by empirical/common experience, but it is difficult to 
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find the optimal parameters. In this paper, artificial bee 
colony optimization is applied to find the optimal 
parameters. It has superior learning capability and can 
avoid the over-fitting and trapping in local minima problem. 

The rest of this paper is organized as follows. The 
proposed prediction model is introduced in Section 2. In this 
section, the auto-encoder network, Artificial Bee Colony, 
Sparse Bayesian Regression, and the process of the model 
are presented respectively. Simulations and results are 
discussed in Section 3. Finally, conclusions are given in 
Section 4. 

 
2.  The proposed prediction strategy 

The structure of the proposed wind power prediction 
strategy is shown in Fig. 1. Briefly, the proposed model is 
composed of a reducing dimension component and an 
optimized forecasting model, which will be introduced in 
Sections 2.1 and 2.2, respectively. 
 



 
Fig 1. Structure of the proposed wind power forecast strategy 
 

2.1  The reducing dimension section  
Reducing dimension, i.e. features extraction, which aims 

at extracting certain characteristics from the original data, 
plays a key role in determining the performance of the 
predict strategy. Improper feature extraction approach will 
lead to poor regression in the model. 

Wind power outputs can be seen as a nonlinear 
mapping function of several exogenous meteorological 
variables and its past values, such as wind speed, wind 
direction, temperature, humidity and so on. To predict the 
future power, denoted as P(t), we need to consider the past 
related factors. The output power and the model inputs can 
be constructed as follows: 

(1)  
( ) { ( ), ( 1),..., ( ), ( ), ( 1),..., ( ),

( ), ( 1),..., ( ), ( 1),..., ( )}

P t V t V t V t n D t D t D t n

T t T t T t n P t P t n

    
   

 

Where ( )V t ， ( )D t ， ( )T t ， ( )P t  represent wind 
speed，wind direction, temperature and wind power at time 

t. In equation (1), ( 1),..., ( )P t P t n   are the historical values 
of wind power and the same goes for the historical wind 
speed, wind direction and temperature. In addition, n 
indicates the order of back shift for the candidate features. 
These features should be considered as many as possible, 
but a compromise is always necessary to avoid too many 
candidate features. Because not all the candidate features 
have the same effect on the output, we take a method 
called auto-encoder network to select the most important 
factors. 

The auto-encoder network is proposed by G.E.Hinton 
and R.R.Salakhutdinov in 2006 and they have used the 

method in handling images. The process of transforming 
the high-dimensional data into a low-dimensional involves 
an adaptive, multilayer encoder network and a 
corresponding decoder network [23]. It is not so easy to 
optimize the weights in nonlinear auto-encoders which 
contain more than one hidden layers. If the initial weights 
are large, auto-encoders maybe only find weak local 
minima while it is infeasible to train auto-encoders with 
many hidden layers of the small initial weights. So, to get 
the low-dimension data, we need pre-training an unrolling 
and fine-tuning network. The pre-training process consists 
of an independent restricted Boltzmann machine (RBM) 
which is an especial connection of Boltzmann machine 
(BM), and the RBM has one hidden and one visible layer 
[24].  

The weight adjustment formula for BM is presented as 
follows: 

(2)  ( 1) ( ) ( ) ( )ij ij ij ij i j i jw t w t w w t vh vh
T

  
       

Where ( )ijw t represents the connection weight which 

is between neuron i and j in step t,   is a learning rate, 

T is a network temperature, i jv h

 is a positive average 

association, and i jv h

 is a reverse average association. 

In RBM, average association is the multiply of visible unites 
outputs and hidden units outputs. Let   and T  integrate 
into coefficient  , then the weight adjustment formula is 
given below: 
(3)        

( 1) ( ) ( ) ( )ij ij ij ij i j i jw t w t w w t v h v h
 

        

Where   denotes the iterations step size. 
Fig.2. shows the weights training of RBM. Let t=0, 

update the hidden neurons state, subsequently update the 
visible neurons state and get the reconstruction data, then 
make t=1update the hidden units state with reconstruction 
and complete one RBM training session. Finally, repeat the 
above-mentioned training again from t=0, we can get the 
corresponding weights after training a RBM. Hence, we 
have: 

(4)  
0 1

( )ij i j i jw v h v h    

 

0

i jv h
1

i jv h

Fig. 2.The weights training of Restricted Boltzmann Machine 

According to the above process several times, we can 
get the latest positive training output as the input of the next 
RBM for training. After pre-training, the model is unfolded to 
get encoder and decoder networks which are initialized by 
the equivalent weights obtained from the above pre-training. 
Then in the fine-tune stage, take back-propagation 
algorithm that mainly uses cross entropy as an objective 
function to fine-tune the auto-encoder weights based on the 
pre-training obtained weights. Cross entropy measures the 
difference between two sorts of probability distribution, and 
it is not negative. The more similar of the two distributions 
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are, the smaller the value is. The original cross entropy is 
defined as: 

(5)  
( )

( || ) ( ) log
( )x

p x
D p q p x

q x
  

Where x is an extraneous variable, q(x) is known as 
probability distribution, p(x) is estimated as probability 
distribution. 

When estimate p(x) with q(x), minimize cross entropy 
D(p||q)  by adjusting p(x). Back-propagation algorithm cross 
entropy function, which is used to adjust auto-encoder 
networks weights, shown as follows: 

(6)  
1

[ log (1 ) log(1 )]
m

m i i i i
i

H t y t y


      

Where it  is the objective probability distribution, iy  is 

the real probability distribution. 
The whole network training purpose is to adjust 

relevance weights to obtain the minimal cross entropy 
function value. We have the following weight adjusting 
formula. 

(7)  
m

ij
ij

H
w

w
 

  


 

(8)  
m m i

ij i ij

H H net

w net w

  


    

(9)  
i

j
ij

net
O

w





 

(10) (1 )m m i m
i i

i i i i

H H O H
O O

net O net O

   
  

   
 

Set the output layers i iO y , and then we have another 

weight adjusting formula as follows: 

(11) ( )m
ij i i j

ij

H
w t y O

w
 

    


 

We can finish the networks fine-tune training according 
to the above weight adjusting formula. 
 

2.2  The optimized forecasting model 
From the above reducing dimension, we take SBR 

model whose parameters are optimized by ABC to predict 
the wind power. 

 

2.2.1  The Sparse Bayesian regression model  

Given a training set 1{ , }N
n n nt x , we hope to learn a 

model of the targets relied on the inputs, with the objective 
to make accurate predictions of t for previously unseen 
values of X. Considering the functions are scalar, we follow 
the standard probabilistic formulation and assume that the 
targets are samples from the model with additive noise [25]: 

(12) ( ; )n n nt y  x w  

Where 1{ }N
n nx   is an input vector, 1{ } N

n nt   is the 

corresponding target, and n is an independent sample 

from some noise process which is further assumed to be 
mean-zero Gaussian with variance 2 . W is the adjustable 
parameter (or ‘weight’), and the objective is to estimate 
good values for those parameters. 
Thus, 2( | ) ( | ( ), )n n np t N t y x x , where the notation 

specifies a Gaussian distribution over nt  with mean ( )ny x  

and variance 2 . The function ( )ny x is the basis function 

with the kernel parameterized by the training vectors: 

( ) ( , )i iK x x x . Due to the assumption of independence 

of nt , the likelihood of the complete data set can be written 

as  

(13)      
22 2 2

2

1
( | , ) (2 ) exp{ }

2

N
p t 


  t w Φw  

Where 1( ... )T
Nt tt , 0( ... )T

Nw ww and Φ is the 

( 1)N N  matrix with 1 2[ ( ), ( ),..., ( )]T
Nx x x  Φ , 

where 1 2( ) [1, ( , ), ( , ),..., ( , )]T
n n n n Nx K x x K x x K x x  .  

A prior probability distribution is defined for simpler 
functions by making the popular choice of a zero-mean 
Gaussian prior distribution over w : 

(14) 
1

0

( | ) ( | 0, )
N

i i
i

p N w  



w  

Where are the vector of N + 1 hyper-parameters. 
Importantly, there is an individual hyper-parameter 
independently associated with each weight, moderating the 
strength of the prior thereon. 

Having defined the prior, Bayesian inference proceeds 
by computing, by Bayesian rule, the posterior over all 
unknowns given the data: 

(15)    
2 2

2 ( | , , ) ( , , )
( , , | )

( )

p p
p

p

     
t w w

w t
t

 

Then, given a new test point *x , predictions are made 

for the corresponding targets *t , in terms of the predictive 

distribution: 
(16)   

2 2 2
* *( | ) ( | , , ) ( , , | )p t p t p d d d      t w w t w  

 

The posterior distribution over the weights is thus given 
by 
(17)

2
2

2

( 1)/2 1/2 1

( | , ) ( | )
( | , , )

( | , )

1
(2 ) | | exp{ ( ) ( )}

2
N T

p p
p

p

  
 

     



    

t w w
w t

t

w w

 

At the convergence of the hyper-parameter estimation 
procedure, we make predictions based on the posterior 
distribution over the weights, conditioned on the maximizing 

values MP and
2

MP
 . Here, ABC is used to find the optimal 

hyper-parameter MP , the concrete process will be stated in 

the next session. Then, we can calculate the predictive 

distribution, from (16), for a new datum 
*x  using (17): 

(18)   
2 2 2

* *( | , , ) ( | , ) ( | , , )MP MP MP MP MPp t p t p d     t w w t w  

Where the posterior covariance and mean are 
respectively: 

(19)  
12( )T     A  

(20)  
2 T    t  

 

With 0 1( , , ..., )NA diag    .  

Since both terms in the integrand are Gaussian, this is 
readily calculated, giving: 
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(21) 2 2
* * * *( | , , ) ( | , )M P M Pp t N t y  t  

With * *( )Ty x   and 2
* * *( ) ( )T

MP x x       . 

So the predictive mean is intuitively *( ; )y x  , or the 

basis functions weighted by the posterior mean weights, 
many of which will typically be zero. The predictive variance 
(or 'error-bars') comprises the sum of two variance 
components: the estimated noise on the data and that due 
to the uncertainty in the prediction of the weights. In 
practice, then, we may thus choose to set our parameters 
w to fixed values  for the purposes of point prediction, 
and retain  if required for computation of error bars. 
 

2.2.2  Using Artificial Bee Colony (ABC) optimizing the 

hyper-parameter α  of the SBR 

Artificial Bee Colony (ABC) optimization algorithm 
simulates the intelligent foraging behavior of honey bee 
swarms based upon stochastic optimization algorithm [26]. 
The ABC algorithm includes three bee groups and many 
other food sources. The bees could be distinguished into 
three sorts in accordance with their responsibility such as 
onlookers, scouts, and employee. A bee waiting on the 
dance area for making decision to choose a food source is 
called onlooker and one going to the food source is named 
as employed bee. The other kind of bee is scout bee who 
carries out random searches for discovering new sources. 
The position of a food source represents a possible solution 
to the optimization problem and the nectar amount of a food 
source stands for the quality (or fitness) of the associated 
solution. An onlooker bee selects one solution and tries to 
improve it. When the network consists of n cluster-head 
sensors, the bees fly in the search space with n 
dimensions. The ABC imitates a population of bees to find 
the cluster-heads. The detailed implementation for finding 
an optimal parameter of SBR procedures of the algorithm is 
given below: 

Step1: Randomly generate an initial population of N 
food sources with a range of boundaries of the variables. 

(22) 
min max min(0,1)( )ij j j jx x rand x x    

Where i=1…N, j=1…D. N is the number of food source 
and D is the number of optimization variables. 

Step2: Evaluate the fitness of each food source (i.e. 
calculate the nectar amount) according to Eq.(23). Here the 
food source I is applied to calculate the prediction value 
y of solution ix  according to Eq.(16). 

(23) | |ifitness



y y

y
 

Where y  is the actual data and y is the predicting data 

in SBR, ifitness  is the cost value of solutions ix . 

Step3: Each employed bee searches a candidate food 

source iv according to Eq. (24). Evaluate the candidate 

food source and apply greedy selections to select a better 
one as the new food source. 

(24) ( )ij ij ij ij kjv x x x    

Where j is a random integer in the range [1, D] and 
{1, 2, ..., }k N is a randomly chosen index different from i 

. ij is a uniformly distributed real random number in the 

range [-1, 1]. 
Step4: Calculate probability values based on the fitness 

values of the solutions in the population. Each onlooker 
selects a food source according to Eq. (24) by roulette 

wheel selection and generates a candidate solution 
according to Eq. (23). 

(25) 

1

i
N

i
i

fitness
i

fitness

p




  

Step5: Evaluate the candidate food source and select a 
better one as the new food source according to greedy 
selection. 

Step6: Memorize the best food source position (solution) 
found so far. 

Step7: If the position of a particular food source cannot 
be improved through the predetermined number of trials 
‘limit’, then select it as an abandoned one. Replace the 
solutions by a different position that is randomly produced 
by a scout according to Eq. (22). 

Step8: Repeat the procedure from step 3 until the 
termination criterion is met. When the algorithm is 
terminated, the position of optimal food source and its 
nectar amount are the optimal values of the decision 
variables and objective function for the considered problem. 

 

2.3  The hybrid prediction strategy  
 We refer to the factors, including the past 24h wind 

speed, wind direction, temperature and the past wind 
power, as inputs to predict the future 3h wind power, in that 
way, the inputs of the model are so numerous, which makes 
the model very complex. Therefore, we take the auto-
encoder network to extract the essential features. Auto-
encoders give mappings in both directions between the 
data and code spaces, and they can be applied to large 
data sets because both the pre-training and the fine-tuning 
scale are linear in time and space with the number of 
training cases. The auto-encoder consists of an encoder 
with layer size of 103-80-40-20 and a symmetric decoder. 
The network is trained on 2000 data sets and tested on 148 
new data sets. We originally use RBM to initialize the 
weights. Then we carried out back-propagation to obtain 
optimal weights. The auto-encoder can learn to encode the 
data sets that allow almost perfect reconstruction. Fig. 3 
displays the entire auto-encoder network. The auto-encoder 
with three layers functions well in our experiments.  

 

1
Tw

2
Tw

3
Tw

1w

2w

3w

1
w

Fig. 3.  The auto-encoder network system structure 
 

The SBR model optimized by ABC gets well subsequent 
to the reducing dimension process. In the process of 
training model, we use ABC to attain optimal hyper-

parameter α , which has stated in section 2.2.2. Then, we 
pass the obtained optimal hyper-parameters to the SBR for 
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calculating the output values. The model training phase is 
terminated under the stopping condition to avoid the over-
fitting problem. In the algorithm, the convergence condition 
depends on whether the error is small enough or not, which 
is determined by the expected modeling and prediction 
accuracy. Then, we test the model to predict wind power. 

 

3. Simulations and results discussion 
The proposed wind power predicting model is tested on 

the real data from wind farm in western China. Wind blows 
randomly and it has an important effect on the power quality 
and the operation of the power system after the wind gains 
access to the power grid. So the accuracy of wind power 
prediction is particularly significant. For the reason that the 
time needed by the power grid scheduling and resource 
allocation mainly focus on 0 ~ 3h, we predict hourly wind 
power with a lead time of 3h.  

We choose data of Jan, April, July and Nov in 2009 
which typifies the four seasons of a year. The data are 
separated into two groups, of which one is used for 
estimation and the other is reserved for model validation. 
Three quarters of the data in every month are the train set 
and the rest is the test set, as a consequence, we have four 
test sets for four seasons. We refer to the recent 24h wind 
speed, wind direction, temperature, wind power to predict 
the next 3h wind power. First, we normalize these data into 
[0, 1] using the formula (26) and then utilize auto-encoder 
network works to reduce dimension. At last we take the 
proposed model to predict the wind power. 

 (26) 
max

max min

x x
x

x x

 


 

Where x  is the normalized data, maxx  is the maximum 

among the dataset, minx  is the minimum among the 

dataset, x  is the not normalized data. 
The error of prediction is a crucial criterion judging the 

performance of a method. Here, the mean absolute 
percentage error (MAPE) is taken. Note that MAPE is a 
reference of accuracy in the time series model usually 
expressed as a percentage: 

(27) 
1

( ) ( )1
| |

( )

n
d f

j d

y j y j
MAPE

n y j


   

Where ( )dy j  is the actual data, ( )fy j  is the predicting 

data at the time step j, and n is the number of samples. 
A comparative performance result with forecast models 

of support vector machine (SVR), core vectors machine 
(CVR) and a hybrid method namely SVR-PSO is depicted in 
table 1. For the sake of a fair comparison, all methods of 
Tables 1 use the same training set and test set. SVR and 
CVR are the two methods which are popular in artificial 
intelligent area. The results show that the proposed method 
outperforms other methods for the same time period in all 
the seasons. The fine-tine results in reducing dimension by 
auto-encoder networks are shown in fig.4.and the 
predictions by the proposed strategy and the comparative 
methods prediction results in winter, spring, summer, and 
autumn are shown respectively in fig 5-8. 

 

Table 1. Comparative MAPE results 

 

 
Fig.4. the fine-tine result 

 
Fig.5. Winter predictions results 
 

 
Fig.6. Spring predictions results 
 

 
Fig.7. Summer predictions results 
 

Test set SVR CVR SVR-PSO Hybrid Strategy 
Winter 17.46836 8.37155 10.40742 5.329107 
Spring 10.68621 4.512724 15.68683 3.116635 

Summer 7.496231 4.458986 10.83847 3.864655 
Autumn 50.3021 24.23551 48.06441 12.551755 
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Fig.8. Autumn predictions results 

From fig.4, we can see the reconstruction error is very 
slight by fine-tune, in this way, we select the most important 
feathers and reduce dimensions without loss of information. 
The different model prediction MAPE can be obtained from 
table 1, from which we can see that our proposed hybrid 
strategy has the best accurate results while SVR has the 
worse, SVR-PSO models has better prediction results than 
SVR owing to the PSO gets the optimal parameters of SVR, 
but it still performs worse than CVR model. From the 
prediction results we can see that the error in spring and 
summer are smaller than that in winter and autumn and the 
forecasting error is the largest in autumn. The reason of this 
phenomenon lies in the fact that the wind in winter and 
autumn gets more variables and has larger effect on the 
power outputs.  

 
4. Conclusions 

In this paper, a new wind power forecast strategy is 
proposed which is composed of an efficient auto-encoder 
network and an optimized forecasting model. The presented 
feature selection sections utilize a nonlinear generalization 
of principal component analysis. It uses an adaptive, 
multilayer “encoder” network to transform the high-
dimensional data into a low-dimensional one and a similar 
“decoder” network to recover the data. The proposed 
forecasting model implements spare probability to compute 
the outputs and the parameters in the process are 
optimized by ABC. The experimental results show that the 
proposed hybrid strategy has better performance. 
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