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Adaptive neural speed control of the induction motor drive 
 
 
Abstract. In this paper adaptive neural controllers implemented in the speed and flux control loops of the induction motor drive are presented. Feed-
forward networks with sigmoidal neurons in the hidden layer are applied. Parameters of the neural network structure are updated on-line according 
to the Backpropagation algorithm. Described adaptive controllers provide the accurate control with fast response of the drive system to the reference 
speed signal. Important advantage of the proposed controllers is its simplified structure, reduced number of parameters adjusted in the design 
process (without direct dependency on parameter of the motor). In this paper results of tests showing correct work of the described control structure 
of the induction motor are presented. 
 

Streszczenie. W artykule przedstawiono adaptacyjny neuronowy regulator zastosowany w pętli sterowania prędkością oraz strumieniem wirnika 
silnika indukcyjnego. Zastosowany regulator bazuje na sieci neuronowej bez sprzężeń zwrotnych z sigmoidalnymi funkcjami aktywacji w warstwie 
ukrytej. Parametry (współczynniki wagowe) sieci neuronowej są aktualizowane on-line zgodnie z algorytmem wstecznej propagacji błędu. Opisane 
regulatory adaptacyjne umożliwiają precyzyjne sterowanie i szybkie odpowiedzi układu na zadane trajektorie prędkości. Istotną zaletą 
proponowanego rozwiązania jest uproszczona struktura regulatorów oraz zredukowana liczba parametrów wyznaczanych w procesie projektowania 
(niezależnych bezpośrednio od parametrów silnika). W artykule zamieszczono wyniki badań prezentujących poprawną pracę opisywanych 
regulatorów.  (Adaptacyjny neuronowy regulator prędkości silnika indukcyjnego). 
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Introduction 

Electrical drives with induction motors are currently one 
of the most common structures found in the industrial 
solutions. Observed trend is related to the low costs of such 
machines. A large number of applications lead to increased 
demands for control systems of the induction motor drives. 
Many applications require precision in tuning the reference 
trajectory of velocity or position, while reducing influence 
from disturbances and parameter changes. Therefore, 
robust control methods are intensively developed.  

In order to meet mentioned requirements, application of 
the adaptive control systems is recommended. On-line 
calculation of the control system parameters during the 
drive operation can give the possibility of adjustment of the 
controller to an actual state of the object. It leads to 
robustness against uncertainty in measurement signals and 
parameter fluctuations.  

Neural control is very powerful tool capable of achieving 
very good results in the control of complex systems. It is 
preferred to use neural networks (NNs) for control when 
requirements for precision are high and system is not 
identified precisely or its parameters are changing. 
Application of control systems based on NNS can improve 
work of the industrial systems. Many of different structures 
of the control systems with NNs were developed. The most 
often presented in publications are: Direct Inverse Control, 
Additive Feedforward Control, Internal Model Control, 
Optimal Control, Predictive Control. The task of NNs in such 
control structures is related to object modeling, parameter 
identification, estimation of state variables, error 
compensation or direct calculation of the control signal. NNs 
can be trained of-line based on previously prepared 
database or on-line –  for each sample of the measured 
input signal. It should be noticed that also different type of 
NNs can be applied in control systems [1].  

Recently the increase of NNs applications in electrical 
drives is observed [2]. The most often presented 
applications concern: control [1],[3],[4],[5],[6], parameter 
identification [7], state variable estimation [8],[9] and 
diagnostics. The neural model reference adaptive controller 
is one of the most often found applications of NNs in drives’ 
control structures. Simulations of three different solutions 
for speed control are presented in [3]. Also the combination 
of such structure with PI controller is described in the 
literature [4]. In the Direct Torque Control structure NN can 

perform two main tasks. The first is its application as a 
speed controller in the external speed control loop. The NN 
controller is trained on-line based on an error signal and 
historical samples, and thus the control signal is calculated 
[5]. The second task of NN in DTC structure is its operation 
as a voltage vector selector based on output signals of the 
hysteresis flux and torque controllers [6].  

As it was mentioned above, in technical literature few 
examples of application of various neural speed controllers 
are presented. In this paper full Field Oriented Control 
structure with neural network controllers trained on-line is 
presented. One-hidden-layer neural networks are applied 
directly in speed and rotor flux control loops. 
Backpropagation algorithm is used for on-line adaptation of 
these two controllers.  

This paper contains five chapters. After a short 
introduction, the general concept of the control structure is 
presented. Then neural adaptive controllers with on-line 
weights calculation are described. In the next part of the 
paper the results of research, presenting the work of the 
drive system, are shown. The last chapter includes 
conclusions on the results achieved for the tested control 
structure. 
 
Speed control structure 
 The Direct Field Oriented Control (DFOC) structure is 
analysed in the paper. A characteristic feature of this type of 
control strategy is possibility to obtain two independent 
control circuits of stator current vector components, 
corresponding respectively to the rotor flux and 
electromagnetic torque. The decoupling module is required 
in a case of SVM inverter used for the IM control. In the 
structure four controllers are used. The most often, in 
classical solutions, the PI type controllers are applied. In 
this paper the PI controllers in the current control loops are 
optimized for fast response of the electromagnetic part of 
the drive. In speed and flux control loops neural networks 
controllers (NNC), trained on-line are implemented. The 
tested control system is presented in Fig. 1.  
 In the simulation model the voltage inverter with Space 
Vector Modulation  (SVM) and decoupling modules were 
created. Simulated control structure in the described case 
assume the full availability of all required state variables, 
thus influence from estimators can be eliminated in the 
presented test results. 
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Fig.1. The block diagram of the control structure 
 
 The voltage inverter system (in the stationary  
coordinates) is often modeled by the following equations 
describing the output voltage: 
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where: SA, SB, SC – switches of the inverter, Ud – voltage at 
the DC link. 
 
Neural adaptive controllers 
 The main part of the presented speed and flux 
controllers is a feedforward network, without feedbacks 
inside the structure. Due to the assumption of on-line 
training, only one hidden layer in the network is applied. 
The NNs with structure: {2-10-1} are applied (which means: 
2 inputs, 10 neurons in the hidden layer and 1 neuron in the 
output) as the speed and flux controllers. For the hidden 
layer the nonlinear sigmoidal activation functions are 
applied. The linear activation function is selected as the 
output function of the neural controller. Calculations in NN 
can be described by the following expression: 
 

(3)                           XWfWfY IIoo ,    

 
where: fo, fI – activation functions of output and hidden 
layer, Wo – output weights matrix, WI – input weights 
matrix, X – processed input vector. The input vector in both 
cases is defined by the equation presented below:  
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where: xr – is a reference value of controlled state variable, 
x – is an actual value of the controlled signal, G is an 
element with transfer function:  
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with time constant T=1ms. Described structure is presented 
in Fig. 2. 

 

 

Fig. 2. Structure of the neural network trained on-line 
 
 In the technical literature on neural networks many 
methods for neural network weights update are presented. 
Most of them require gradient information, exactly – the 
calculation of derivative of the cost function according to 
several weights. One of the most effective and often used is 
backpropagation algorithm [10]. The general goal of training 
procedure is related to minimization of the cost function 
defined as mean square error between the NN output and 
the real value (training patterns). The cost function is often 
defined in the following way:  
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where: P – number of training patterns, M – dimension of 
the output layer, d – required output vector, y – actual 
output vector of the network. For this purpose weights of 
neural network are updated as:  
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where: wij – weights between node i and j in k-th iteration. 
According to applied algorithm weights are updated 
according to following equations:  
 

(8)                         jij xw  ,    

 

where:  – learning rate, xj - input of j-th neuron.  
For output layer we have:  
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where: fo

’ -derivative of the activation function in the output 
layer.  
 Weights between the input and hidden layer are 
calculated using the following expression:  
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where: fI
’ - derivative of activation function in input layer, wjo 

– weights between nodes in next layer.  
The learning rate  determines rapidity of the algorithm.  
 Analyzed control structure can be considered as a 
series connection between the controller and the object (for 
several control loops). In the training algorithm, for 
calculation of the error in Eq. (6), the difference between the 
desired value and actual value of the suitable state variable 
is assumed. It is unlike in theoretical training of neural 
networks, when the net output is used for error calculation. 
Here the object (voltage converter and the induction motor) 
can be treated as a kind of disturbance of this back-
propagation algorithm, thus the system output is used as a 
net output. Weights values of the NN are calculated in 
parallel to the main processing path. It is realized on-line 
during work of the drive system, according to the Eq. (7).  
 
Results 
 In this section chosen simulation results obtained for the 
presented control structure with the described speed and 
flux NNCs are presented. Calculations are realized in 
Matlab/Simulink. Sampling time equal 0.1ms is assumed. 
First tests present correct work of the modeled drive 
system. Transients of state variables in the structure, shown 
in Fig. 3, are realized for step trajectory of the reference 
speed, assumed equal 40% of the nominal speed. The 
learning rates equal 0.03 in both NNC controllers trained 
on-line were assumed. Short settling time of the driving 
motor speed on reference level is observed (Fig. 3a). At 
time t = 0.6s the load torque is applied. Output signal of the 
both NNCs is limited on the value equal 3 [p.u.]. Effective 
decoupling of the electromagnetic torque and rotor flux 
control circuits is observed (Fig. 3c). Increase of the isy 
current is related to the load torque change (Fig. 3d).  
  

a)    b) 

 
c)    d) 

 

Fig. 3. Transients of state variables in analyzed drive: the actual 
and reference speed (a), hodograph of the rotor flux (b), 
components of the stator current vector (c, d) 
 
 Next tests are realized for a wide range of changes of 
the reference speed and step changes of the load torque. 
Results are presented in Fig. 4. It should be noticed that 
even in case if rotor is stopped, the electromagnetic torque 
required by the load condition is generated. Very high 
dynamics of the system is obtained. 
 In all presented tests initial values of NNs’ weights are 
chosen randomly. Adaptation of weights is realized on-line very 
quickly, so the design process of those two main controllers is 
simplified. Trajectory of the drive speed is almost the same as 

the reference speed, even in the reverse operation of the 
motor. 
 In Fig. 4c transient of the isy component of the stator current 
is presented. During transient states (changes of the reference 
speed or the load torque) fluctuation of this state variable can 
be observed. During significant changes of the reference 
speed (in time t=1.5s, t=5s, t=5.5s) relatively big overshoots of 
this current component are appearing. On contrary, overshoots 
of isy current during load  torque changes are relatively small.  
However it should be noticed that presented results are from 
simulation; in the real drive limitation of the dynamics of the 
control signal should be correctly introduced. So it can be 
concluded that application of the proposed NN controller leads 
to forcing of high dynamics of the control structure.  
 

a)     

 
b) 

 
c)     

 

Fig. 4. Transients of the drive and reference speed (a), load torque 
changes (b) and isy component of the stator current (c) 
 

 In Fig. 5 the influence of the learning rate factor  of the 
speed controller to the operation of the drive system is 
demonstrated. For better transparency of  changes 
influence on the drive system operation, only NN adaptive 
speed controller is implemented in control structure (the 
rotor flux controller is assumed as classical PI controller in 
this test). The value of the coefficient determines the time 
of adaptation of NN weights and ultimately influences the 
dynamics of the speed transients. Increase of the learning 
rate gives higher dynamics of the controlled signal as well 
as the bigger values of the output signal of the speed 
controller. In result for higher values of the  parameter, 
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response of the system is faster and speed of the drive is 
fixed on reference value in shorter time (Fig. 5a).  
 It is important that during on-line training of the NN, the 
problem of the controller structure selection is almost 
eliminated. It is essential problem during application of 
neural models trained off-line, where NN topology 
significantly influences its generalization properties [11].  
 

a)     

 
b) 

 

Fig. 5. Influence of the  coefficient of the speed controller to the 
speed transient (a) and the output signal of the speed controller (b). 
 
Conclusion 
 This paper presents the Direct Field Oriented Control 
structure of the induction motor drive with the adaptive 
neural network controllers. Obtained results present the 
effective speed control of induction motor with very high 
dynamics in tuning of the reference speed signal. Important 
advantages of the presented rotor speed and flux 
controllers are also the simplicity of the structure and design 
process. It should be highlighted that just one parameter of 
the controller - its learning is selected, independently on the 
parameters of the induction machine. In presented case 
both controllers have the same value of the learning rate, 
neural network structure and input vector. Learning rate of 
the neural network significantly influences the system 
dynamics. Described NNCs can be applied also in the other 
control structures. The future works of authors will be 

concentrated on FPGA realization of the described control 
structure. 
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