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Abstract. We present the information processing perspective on biological systems. Several metrics, similar to the ones used in digital electronic 
circuits, are introduced. These metrics allow us to compare biological information processing structures with their electronic counterparts, to define 
the ones with the best dynamical properties, analyse their compatibility and most importantly, automatize their design. Regarding the metric values 
obtained and used on a simple example, target applications of synthetic information processing biological structures are discussed. 
 
Streszczenie. W artykule opisano zagadnienie przepływu informacji w systemach biologicznych. Zastosowano tu odwzorowanie na elementach i 
obwodach elektronicznych, co pozwoliło na analizę ich własności, w tym dynamicznych oraz zautomatyzowanie projektowania takich modeli. 
Zawarto także omówienie otrzymanych wyników badań. (Porównanie wybranych parametrów struktur przepływu informacji w systemie 
biologicznych i elektronicznym). 
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Introduction 
 Engineered information processing structures were up 
until recently mainly based on electronic circuits. With the 
propagation of the computer science to different branches 
new processing platforms appeared also in the field of 
biological systems. Numerous synthetic biological 
information processing structures, especially on the basis of 
gene regulatory networks, were already constructed in 
recent years [1]. In this paper we present the basic 
dynamics of these systems and introduce the metrics 
similar to the ones used in digital electronic circuits. 
Establishment of such metrics allows us to evaluate the 
dynamics of biological structures in the meaning of 
information processing capabilities and make a comparison 
of their selected performances with digital electronic 
circuits. Moreover they allow us to establish criteria for 
improvements of dynamics of analysed biological systems 
and for the automation of their design. Metrics are essential 
to define appropriate fitness functions which are utilized in 
the metaheuristics for solution space investigation in order 
to find biological systems which reflect the desired 
dynamics.  
 The paper is organized as follows. Firstly, we give a 
basic description of dynamics in gene regulatory networks, 
which is followed by an introduction of metrics and 
demonstration of their evaluation on a sample biological 
circuit. With the support of evaluated metrics fitness 
function is established, which is used in a variation of 
genetic algorithm for optimizing the behaviour of previously 
described biological system. The behaviour of biological 
systems as information processing structures is compared 
to digital electronic circuits. Their target applications are 
also discussed. 
 
Introduction to dynamics of gene regulatory networks 
 Networks of interacting genes located within the cell are 
called gene regulatory networks. Their dynamics is based 
on the gene expression which can be presented by two 
processes, i.e. transcription and translation. In the process 
of transcription, part of the gene called protein coding 
sequence is transcribed to messenger RNA (mRNA), which 
is in the process of translation translated into a target 
protein. While we can presume that translation is an 
unconditional process, transcription requests the presence, 
absence or specific combination of designated proteins 
which are called transcription factors. We can divide these 
proteins in two groups regarding their influence on 

transcription. Transcription factors that activate transcription 
are called activators and transcription factors that repress 
transcription are called repressors. Interaction of genes in 
gene regulatory networks is achieved if protein coding 
sequences encode the transcription factors for some other 
or even for their own genes. With the methods and 
procedures of synthetic biology one can define the 
transcription factors that will control the expression of a 
certain gene and the proteins this gene will express and 
therefore construct synthetic biological systems. Gene 
regulatory networks with specific functionalities, also in the 
context of information processing, can be constructed 
accordingly. Three basic examples of gene regulatory 
networks presenting information processing structures are 
inverter, NOR gate and oscillator. Inverter can be 
constructed with the gene expressing an output protein and 
repressed by an external input (see Fig. 1(a)). If the circuit 
is extended to two repressors, i.e. two external inputs, 
where only one needs to be present in order to effectively 
repress the transcription, the circuit’s behaviour reflects the 
NOR gate (see Fig.1(b)). If the gene represses its own 
expression we can achieve oscillatory behaviour (see 
Fig.1(c)).  These circuits can be modularly connected into 
more complex biological circuits, but their characteristics 
have to be regarded in order to analyse their compatibility. 
Characteristics of each gene regulatory network do not 
depend only on its topology, but also on involved chemical 
species and reactions among them. Detailed analyses must 
therefore be performed before the construction of such 
systems. These analyses are mostly based on 
mathematical models. 
 
 
 
 
 
Fig.1. Gene regulatory networks presenting inverter (a), 
NOR gate (b) and oscillator (c), where i, i1 and i2 denote 
external inputs and P output protein defined with the protein 
coding sequence.  
 
Information processing perspective on gene regulatory 
networks 
 Several metrics that are similar to characteristics which 
describe the properties of digital electronic circuits are used 
in order to objectively analyse the information processing 
capabilities of target biological systems. We can use the 

 a)                          b)                                c) 
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evaluated metrics in order to define the weaknesses of 
analysed biological circuits, determine the ones with the 
best dynamical properties and study compatibility among 
them. Moreover, they can be used for the automation of 
design of synthetic biological systems. This section 
describes an introduction of such metrics from information 
processing perspective. 
 In order to use biological systems as information 
processing structures information has to be presented with 
designated chemical species in the system. This role is 
assigned to certain proteins, i.e. output species, which are 
expressed by certain segment of the biological system and 
usually also have a role of transcription factors, i.e. inputs, 
to other segments of the biological system. Information 
carried by these proteins can be encoded with their 
concentrations. While the behaviour of biological systems is 
more or less deterministic, logic levels of input and output 
species can be defined. For the reasons of its convenience 
binary logic is used in the majority of modern computer 
structures and therefore also in biological systems. 
Information is presented by the presence (logical 1), 
respectively absence (logical 0) of observed chemical 
species. In order to use these structures in more complex 
biological systems logic levels have to be defined more 
accurately, similarly as in digital electronic circuits. These 
levels are defined based on the concentration values the 
system achieves in optimal scenario and based on the 
maximal expected noise system will be exposed to (external 
noise) and system will express (intrinsic and extrinsic noise) 
in its expected environment [2–4]. Absolute noise values 
can differ significantly for concentrations that present 
different logic states and must be evaluated for the 
concentrations presenting logic 0 and concentrations 
presenting logic 1 separately. Various techniques for noise 
evaluation using the experimental results [5] or using 
mathematical approaches [6–8] exist and can therefore be 
used for the estimation of noise values in both logic states. 
Let’s presume that COL and COH present ideal 
concentrations of output specie presenting logic 0, logic 1 
respectively. They can be determined as extreme, i.e. 
minimal and maximal concentration levels without the noise 
consideration whether on simulation whether on 
experimental results. Furthermore, let’s presume that NL 
and NH present maximal expected noise in concentrations 
around COL, COH respectively. Output specie concentrations 
that have to be accepted as a valid signal by other 
segments of the system can thus be calculated as 
 
(1)    LNOLCOLC (max)  

(2)    HNOHCOHC (min)  

 
where COL(max) and COH(min) present maximal low level output 
concentration and minimal high level output concentration 
respectively. The region of concentrations in the interval 
]COL(max), COH(min)[ has no valid interpretation and is called 
invalid range in digital electronic circuits. The size of invalid 
range on the one hand defines the sensitivity of the system 
to the noise and on the other hand the productivity of the 
system, i.e. larger invalid ranges reflect in larger 
robustness, but larger energy consumption for the transition 
from one logic state to another. Trade-off between 
sensitivity and productivity must therefore be sought [3]. 
Characteristics describing logic levels in biological systems 
slightly differ from the ones in digital electronic circuits. We 
need to define input signal levels separately, i.e. 
concentration levels that bring the system to valid output 
concentrations, i.e. concentrations in the interval [0, COL(max)]  

or [COH(min), ∞]. Two more characteristics are therefore 
introduced, i.e. maximal low level input concentration 
(CIL(max)) and minimal high level input concentration (CIH(min)). 
We are able to analyse the compatibility of various 
biological systems in this context: two biological systems 
are compatible in the meaning of logic levels if COL(max) (out) 

≤ CIL(max)(in) and if COH(min) (out) ≥ CIH(min)(in), where out 
denotes output and in input biological system. Furthermore, 
switching times, i.e. rise time and fall time, can be 
measured. Switching time is defined by the time the 
concentration of output chemical specie is located within the 
invalid range after the switch is initiated with the 
modification of input signal. We can evaluate this times with 
the initiation of a switch with a boundary input values, i.e. 
CIL(max) and CIH(min), and measuring the transitions of the 
output specie from the value COL(max) to  COH(min) when 
evaluating the rise time and from the value COH(min) to 
COL(max) when evaluating the fall time.  
 
An example of tunable biological oscillator  

Establishment and evaluation of metrics described in 
preceding section gives us objective criteria that can be 
used in the design of synthetic biological systems with 
desired dynamics. Evaluated metrics can help us with the 
investigation of compatibility among different systems, with 
their comparison and most importantly they can be a basis 
for the establishment of fitness functions for various 
metaheuristic approaches, which can be used for automatic 
design of synthetic biological systems with desired 
dynamics. In this section we will demonstrate an application 
of genetic algorithm to the design of a simple biological 
oscillator (see Fig. 1(c)), which can be described with the 
following ordinary differential equation (ODE) based model 
[9]: 
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where M(t) and P(t) present the concentrations of mRNA 
and observed protein respectively, rM and rP production 
rates, qM and qP degradation rates, τ delay in translation, n 
Hill coefficient, m nonlinearity in protein synthesis cascade 
and k scaling constant. Let’s presume that the parameters 
that define the ODE models are as follows: rM= rP=1h-1, qM= 
qP=0.21h-1, n=2, m=3, τ=4h and k=1 [9] and that the role of 
output specie is designated to protein P (its time evolution is 
presented in Fig. 2). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Time evolution of protein P according to the model presented 
in Equations (3) and (4) and the parameter values derived from [9]. 
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Fig.3. Evaluating the rise time of protein P according to the model 
presented in Equations (3) and (4) and the parameter values 
derived from [9] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Evaluating the fall time of protein P according to the model 
presented in Equations (3) and (4) and the parameter values 
derived from [9] 
 
 Introduced model will be used to demonstrate the 
evaluation of metrics established in preceding section and 
to determine the parameter values according to which the 
model reflects the desired behaviour.  Presented model is 
relatively simple, but its dynamics is on the other hand 
complex enough to demonstrate the introduced concept. 
While its behaviour is independent of external inputs, only 
the metrics describing the properties of output specie will be 
evaluated. 
 Firstly, we evaluate the optimal concentration levels that 
present logic 0 and logic 1 as minimal and maximal 
concentration values, i.e. COL ≈ 0.85 and COH ≈ 15.3. 
Secondly noise has to be evaluated. According to [10] the 
coefficient of variation in a system similar as ours stays 
below 10% due to its autoregulatory structure. However, 
coefficient of variation can increase due to the system’s low 
copy number which is dependent on number of plasmid 
copies within the cell and is a consequence of so called 
finite number effect [11]. We presume that the maximal 
noise values equal 20% of concentration levels. Maximal 
expected noise levels can be estimated as NL = 0.17 and 
NH = 3.06. According to Equations (1) and (2) COL(max) and 
COH(min) can be calculated as 1.02 and 12.24 respectively. 
Switching times can be measured as the times the 
concentrations are located within the interval ]COL(max), 

COH(min)[ = ]1.02, 12.24[. Rise time and fall time thus equal 
4.88h and 12.6h respectively for the proposed parameter 
values (see Fig. 3 and Fig. 4). 

 We evaluated several metrics on the example of simple 
biological oscillator. Let’s presume that our goal is to find 
the parameter values that would minimize the switching 
times of proposed model without significant changes in 
concentration levels. In order to achieve our goal the 
following variation of genetic algorithm is proposed: 

1. Initialize the parameter set population. 
2. Evaluate the population. 
3. While the desired behaviour is not reached: 

i) Select parents and produce offspring 
according to the values of their fitness 
functions. 

ii) Mutate the resulting offspring. 
iii) Evaluate new members. 
iv) Select individual members for the next 

generation. 
The fitness functions are defined according to the switching 
times of each member of population and according to the 
concentration levels members achieve for states presenting 
logic 0 and logic 1. In order to gain applicable results 
parameter set was limited to the values which are 
comparable to the ones found in nature, i.e. rM ∈ [0.36h-1, 
3600h-1], rP ∈ [1h-1, 1000h-1] qM, qP ∈ [0.01h-1, 100h-1], n,m ∈ 
[1,10], τ ∈ [0h, 10h] and kn ∈ [0.1, 100] [12].  
 Given the constraints and the desired behaviour an 
approximation of optimal solution was determined with the 
genetic algorithm in approximately 300 iterations. The 
following parameter values were obtained: rM ൎ 6.61h-1, rP ൎ 
2.11h-1, qM ൎ 1.25h-1, qP ൎ	10.66h-1, n ൎ	5.12, m ൎ	7.37, τ ൎ	0.1h 
and k ൎ	 1.3. Simulation results obtained on the basis of 
given parameter values are presented in Fig. 5. Rise time 
and fall time equal approximately 0.1545h and 0.3991h 
respectively for the proposed parameter values. Even 
though the switching times drastically improved when 
compared to the original model, they are still much higher 
than the ones of digital electronic circuits. These times 
could be improved to some degree with fewer constraints 
(i.e. without predefined concentration levels) or with the 
employment of some different gene regulatory network 
topology (for example the one presented in [13]). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. Time evolution of protein P according to the model presented 
in Equations (3) and (4) and the parameter values obtained with 
genetic algorithm. 
 
Discussion 
 Our examples show that the time scales of biological 
circuits can be much higher than the ones of digital 
electronic circuits. Switching times can be improved to 
some degree, but because of the speed limits of elementary 
gene expression reactions such as transcription and 
translation the absolute boundary of these times is located 
much higher than the one in electronic circuits. The other 
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disadvantage of processing with gene regulatory networks 
is high presence of noise. On the other hand noise effects 
can be mostly eliminated and sometimes even exploited 
[14]. Similar as in digital electronic circuits, crosstalk is also 
inherent to biological systems. It derives from the 
unpredicted interactions among different chemical species 
and can be eliminated to some level with the use of so 
called orthogonal transcription-translation networks [15]. 
The problem that arises here is in the scalability of such 
circuits because the number of orthogonal proteins, which 
can be found in nature is too small to allow the construction 
of more complex synthetic biological networks [16]. One of 
the approaches to solve this problem is in the construction 
of artificial gene repressors [17]. In spite of all, there are 
numerous advantages of processing with biological 
systems, which can be exploited in their target applications. 
Noticeable accelerations of response times can be 
achieved with the accomplishment of massive parallelism 
which is inherent to these systems. Moreover their main 
advantage is in the possibility to combine the synthetic 
biological systems with the ones already present in nature 
in the fields such as biomedicine, pharmacy, agriculture and 
energy. 
 
Conclusion 

Numerous weaknesses of biological systems show that 
it is utopian to think that they will substitute modern 
information processing platforms in the near future. On the 
other hand there are many possibilities to use their 
advantages in other kind of applications, even in the 
meaning of information processing. Here we presented an 
introduction of metrics which allow us to define the 
biological systems with the best information processing 
capabilities, investigate their compatibility and most 
importantly establish fitness functions that can be used in 
various metaheuristics for the automation of the design of 
synthetic biological systems with desired functionalities. 
The research was supported by the scientific-research 
programme Pervasive Computing (P2-0359) financed by 
Slovenian Research Agency in years from 2009 to 2012. 
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