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Abstract. An approach to the analysis of large-signal stability of a Boost converter via the small-signal loop gains is presented. The large-signal 
stable region of the small-signal designed bilinear Boost converter is estimated in light of the Input-output stability concept. By doing so, the effects 
of small-signals on large-signal stability are revealed. The effectiveness of the presented approach is verified by simulations and good agreement is 
reported. 
 
Streszczenie. Zaprezentowano analizę stabilności przekształtnika DC-DC typu Boost dla dużych sygnałów. Porównano pracę dla małych i dużych 
sygnałów i porównano stabilność układów. (Oszacowanie stabilności przekształtników DC-DC typu Boost dla dużych sygnałów) 
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Introduction 
 The small-signal methods are foundations for analysis 
and design of switching power converters (SPCs). Relative 
stabilities of SPCs could be designed based on the small-
signal tools, such as Bode, Nyquist plot, and root locus, etc. 
Although the designed stabilities of SPCs only make sense 
in the small-signals, they also ensure the large-signal 
stabilities due to the sufficient stability margins. It is well 
known that the large-signal stability cannot be predicted by 
the small-signal models where the approximations made 
may account much in large-signals. Thus, large-signal 
analysis is often required to investigate the system 
convergence behavior under large disturbances, such as 
input voltage and load current variations. 

The virtual equilibrium point approach is proposed by R. 
Erickson [1] who derived the analytical expressions for the 
equilibrium points of the system. He also pointed out that 
the unwanted real equilibria have to be shifted out of the 
operating region (namely, becoming the virtual equilibria) to 
ensure the large-signal stable operation of switching 
regulators. Lyapunov-based approach for design and 
analysis of the large-signal stability of SPCs was developed 
by S. Sanders [2] and has been intensively used by other 
scholars [3-7]. Once the Lyapunov functions have been 
constructed, the large-signal behavior and stability regions 
of SPCs could be easily predicted and estimated. Passivity-
based methods were also employed for the stability 
analysis and design of SPCs [8-10]. From the perspective 
of passivity, the storage function which has the similar form 
to the Lyaupnov type could be generated to design the 
control laws and stabilities for SPCs. Therefore, both the 
passivity-based approaches and the Lyapunov-based 
approaches share the concept of “energy” that used to 
define the large-signal stabilities for SPCs.  

All these approaches for large-signal stability of SPCs 
were totally different from conventional small-signal 
methods. The investigations of large-signal stability for 
SPCs had been conducted independently of small-signal 
models. Therefore, the connection between the small-
signals and the large-signals in SPCs was lost. The effects 
of small-signals on the large-signal stability have not been 
well understood yet.  

In this paper, the large-signal stability of the switching 
power converter is analyzed via the small-signal control 
loops. The effects of small-signal loop gains on the large-
signal stability are analytically revealed in light of the Input-
Output stability concept. To illustrate the application of the 
approach, the bilinear Boost DC-DC converter is taken as 
the case for study throughout the paper. 

Averaging-based modelling 
  The Boost DC-DC converter (step-up converter) is a 
well-known switching power converter that is capable of 
producing the DC output voltage greater than its DC input 
voltage. Figure 1 shows the Boost DC-DC converter circuit. 
The input voltage Vg is step up to a desired output value VO 
with the proper switching on-off of the transistor S to make 
the stored energy in the inductor L power from input voltage 
Vg to the output voltage VO cyclically.  
 

 
Fig. 1 Boost DC-DC converter circuit 
 
 In continuous conduction mode (CCM) of the inductor 
current iL, the transistor S and the diode D operate 
complementarily. The dynamics of the Boost power stage 
during the power switch S turn-on and turn-off can be 
expressed by the following piecewise linear differential 
equations 
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u . The variables d and Ts are the duty ratio and 

switching frequency of the Boost power stage respectively. 
 By using the linear ripple approximation method [11], the 
above discontinuous model can be approximated by a 
continuous state-space averaging model 
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The variables in the above equation will be equal to the 
corresponding quiescent values X and D superposed by 
their perturbations 
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Substituting (3) into (2) produces 
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It is noted that the (4) describes a bilinear system due to 
the multiplying term between the state variable and the 
control input (duty cycle) [12]. Also, the above equation is 
valid for large signal analysis because no small signal 
approximation is made. The resulting large-signal 
perturbation model is also shown in Fig. 2, which can be 
described as 
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Fig.2 Averaged large-signal perturbation model of the Boost 
converter circuit 
 
Compensation of small-signal loop gains 

Before embarking on large-signal analysis of the Boost 
converter, small-signal design of loop gains is necessary to 
ensure the stability margins. Fig. 3 shows the control block 
diagram for the average-current mode controlled (ACMC) 
Boost converter. The ACMC controllers are composed of 
two compensators: 1) the inner current loop compensator 
(denoted by Fi) to achieve the fast tracking of the inductor 
current to the reference; 2) the outer voltage compensator 
(denoted by Fv) to force the output voltage following the 
reference voltage. By this cascaded control structure, the 
regulation for the converter states is attained at higher 
dynamics than conventional single control loop structure.  

As shown in Fig. 3, the current loop gain and the voltage 
loop gain are derived as 
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where Ri, Fm, βv, Gvd(s), and Gid(s) are the current sensor 
gain, modulator gain, the voltage sensor gain, the duty 
cycle-to-output voltage transfer function, and the duty cycle-
to-inductor current transfer function respectively.  

In this design, both the current compensator and the 
voltage compensator take the two-pole, one-zero 
compensation network, and their transfer functions are 
given by 
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Fig. 3 Control block diagram for the Boost converter 

Given the parameters for the Boost converter circuit in 
Table 1, the designed parameters of the current 
compensator and the voltage compensator are: ωi=4900, 
ωiz=2512, ωip =125600, Ri=0.2, Fm=1/3, and βv=0.042, 
ωv=95000, ωvz=630, ωvp =283000 respectively.   

Table 1. The parameters for the Boost converter circuit 
Name Denomination Values 

Filter Inductor L 120 μH 
Filter Capacitor C 470 μF 
Nominal load R 60 Ω 

Equivalent resistance RL 150 mΩ 
Switching frequency fsw 100 kHz 

Input Voltage Vg 36 V 
Output Voltage VO 72 V 

The Bode diagram for both the current loop gain and the 
voltage loop gain are then plotted in Fig. 4, where the cut-
off frequencies and phase margins for both the 
compensated current loop and the voltage loop are 11 kHz 
and 60 degree, and 3 kHz and 59 degree respectively.  

 
Fig. 4 Compensated loop gains for the Boost converter 
 
Analysis of Large-signal stability 

As the derived equation (4), the state-space averaging 
representation of the Boost converter results in a bilinear 
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system which make the Boost converter be subjected to 
instabilities under large-signal disturbances.  

From the control block diagram in Fig. 3, the control 
input (duty cycle) is derived as 

(9)  zLimiOimvv dFFRFFFd  iv ˆˆˆ   

where dz represents the input disturbance of the outer 
voltage control loop. 

The large-signal model of the Boost converter in Fig. 2 
also gives  
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Substituting (10) and (11) into (9), then (9) is rewritten as 
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Application of the Kittaneh’s norm inequality [14] which 
is sharper than the conventional triangular inequality yields 
(14), shown at the bottom of this page. 
And the gain of the system is defined as 
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Then, the equation (14) is rearranged as (16), shown at the 
bottom of this page. 

It is known that the control duty ratio d is the constrained 
control variable in the Pulse-Width Modulated (PWM) 
switching power converter, which implies the stable 
operation for the systems. Therefore, the closed loop 
controlled Boost converter systems is input-output stable 
[13] if the denominator of (16) satisfies (17), also shown at 
the bottom of this page. 

The equation (17) indicates the sufficient condition for 
stable operation of the Boost converter control system, 
which can be used to calculate the maximum disturbances 
of the converter states, i.e., inductor current and capacitor 
voltage. The shaded area in Fig. 5 shows the calculated 
stability region for the Boost converter based on the 
parameters given in the Table 1, while its center is the 
operating point. The stability region means that any 
deviation from the operating point will inevitably converge to 
it if only the deviation did not exceed the shaded area. Also, 
there is no doubt that different loop gains produce different 
large-signal stability regions. 

  

Fig. 5 Stability region for the Closed-loop Boost converter 
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To verify the effectiveness of the presented approach, 
two testing point A and B as in Fig. 5, are selected to test 
the responses of the designed Boost converter under 
theses disturbances. At point B outside the predicted stable 
region, the disturbance is (+0.8 A, -30 V), which means that 
there are the positive deviation of 0.8 A for the inductor 
current and the negative deviation of 30 V for the output 
voltage at the same time. Also, at point A inside the 
predicted stable region, the disturbance is (+1.6 A, -30 V), 
which means that there are the positive deviation of 1.6 A 
for the inductor current and the negative deviation of 30 V 
for the output voltage at the same time. The responses of 
the closed-loop Boost converter to the disturbances of point 
A and point B are shown in Fig. 6(a) and Fig. 6(b) 
respectively, where the response of point A is coming into 
the oscillatory state and the response of point B remains 
stable after the disturbance. These results agree well with 
the stability estimation. 

 
Fig.6. Reponses of the Boost converter under different 
disturbances: (a) unstable response to disturbances of (+1.6 A, -30 
V), (b) stable response to disturbances of (+0.8 A, -30 V) 
 
Conclusion 

Analytical approach for the large-signal stability 
investigation is presented in this paper. By the notion of the 
Input-output stability, the large-signal stability region for a 
bilinear DC-DC converter has been estimated via the small-
signal loop gains. The effectiveness of the approach has 
also been verified under different disturbances in the Boost 
converter. The cornerstone for the analysis and design of 
SPCs is still the small-signal method. Therefore, the 

obtained results could be used for the re-design of the 
large-signal stability for SPCs. 
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