
228 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1b/2013

LIU Wen1,2

The School of Computer Science and Technology Dalian University of Technology Dalian,China.(1)
Dept.of Electrical Engineering,Institute of XinJinag Mechano-Electrical Vocational and Technical,Urumqi,China.(2)

Hybrid Particle Swarm Algorithm for Solving Multidimensional
Knapsack Problem

Abstract: In order to effectively solve combinatorial optimization problems, the Estimation of Distribution Algorithm (EDA) and Particle Swarm
Optimization (PSO) combine to form a new ED-PSO hybrid algorithm, the algorithm can effectively apply global statistical information and global
optimal solution to the solution space search. This algorithm is used to solve the Multidimensional Knapsack Problem (MKP). Experimental results
show that when solving multidimensional knapsack problem, ED-PSO algorithm is superior to traditional PSO algorithm, and also better than many
heuristic intelligent algorithm. Meanwhile, ED-PSO algorithm uses fewer parameters, and therefore easier to be implemented, and run more stable.

Streszczenie. W artykule przedstawiono wykorzystanie algorytmu hybrydowego ED-PSO do rozwiązania wielowymiarowego problem Knapsacka
(ang. MKP). Zastosowano tu optymalizację roju cząstek (ang. PSO) oraz algorytmu estymacji EDA. Wyniki eksperymentalne pokazują, że w
przypadku MKP proponowany algorytm wykazuje znacznie lepsze możliwości niż klasyczny PSO. Dodatkowo ED-PSO ma mniej parametrów, przez
co jest łatwiejszy w implementacji. (Hybrydowy algorytm roju cząstek w rozwiązywaniu wielowymiarowego problemu Knapsacka).

Keywords: Hybird Particle Swarm Optimization; Estimation of Distribution Algorithm; Optimization; Multidimensional Knapsack Problem
Słowa kluczowe: Hybrydowa optymalizacja roju cząstek, algorytm estymacji rozkładu, wielowymiarowy problem Knapsacka.

Introduction
Particle Swarm Optimization (PSO) is based on the

iterative optimization algorithm, an optimization algorithm
based on swarm intelligence developed in 1995 by
Kennedy, Eberhart and etc., behavioral studies derived
from artificial life and birds’ predation[1]. Due to fast
convergence and low parameter settings of this algorithm, it
has received extensive academic attention in recent years,
and has become an important optimization tool, and has
been widely applied in function optimization, neural network
training, pattern classification and other engineering fields.
Standard PSO algorithm principle is that each particle
continuously learns individual experience and the best
individual experience of groups; the idea of Estimation of
Distribution Algorithm is to generate new solutions based on
information probability distribution model of current quality
solutions information in each iteration [1,2]. In this paper,
these two algorithms are combined to form ED-PSO hybrid
algorithm, and using this algorithm to solve the
Multidimensional Knapsack Problem (MKP). And prove the
validity of solving MKP problem using ED-PSO algorithm by
means of experiments. Simulation results show that ED-
PSO algorithm has stronger solving abilities than traditional
EDA algorithms, PSO algorithm, and a heuristic algorithm.

Particle Swarm Optimization
The basis of PSO algorithm is developed through

people’s observation of animal social behavior. The initial
version of PSO is formed by adding neighboring speed
matching, eliminating unnecessary variables, and
considering multi-dimensional search as well as
acceleration based on distance.

(1) 1̀ 2()() ()()id id id id gd idv wv c rand p x c Rand p x    

(2) id idx x v 

 w is the inertia weight,c1 c2 are accelerate constants,
rand() and Rand() are two random functions changing in the
range of [0,1][1]

Estimation of Distribution Algorithm (EDA) Based on
different probability model

Estimation of Distribution Algorithms is an evolutionary
algorithm based on probabilistic models[2]. It can describe
relationship between variables using probabilistic model, so
problems that are difficult to be solved using traditional
genetic algorithm can be solved. In the field of EDA
research, the simplest case is that there is no relationship

between variables. In this case, distribution of solutions can
be generally represented by a simple probability vector. Set
the problem to be solved as an n-dimensional problem,
each variable is a binary value, variable independence
makes the probability of any solution can be expressed as

1 2
1

(, , ,) ()
n

n i
i

P x x x P x


 　　

ED-PSO hybrid algorithm
In this algorithm, define a particle swarm, N is the total

number of particles in the space, denoted by

1() ((), (), , ()), () {0,1}i i id iD idX t x t x t x t x t   indicating

the value of i-th particle in the t-th generation, D-th

dimension, ()idx t as a candidate solution. When algorithm

is working, firstly identify UMD model in space of particle
swarm, then base on collected advantage solution set to
build a distribution estimated space. UMD uses probability
vector 1(, , , ,)d DP p p p   to build estimation of

distribution space in the search space, which dp represents

a probability when 1 appears in d-dimension. The search

method of probability vector 1(, , , ,)d DP p p p   to

guide particles in 0-1 solution space is as follows (i.e. guide
to generate particle of next generation) [3]:

rand() <  If < dp , set (1) 1idx t   , otherwise set

(1) 0;idx t   Otherwise (1) ().id dx t gbest t 

where  is control parameter used to control probability
vector P to randomly grow.Probability vector is generated
according to the following rules[4]:

(3) 1

N

id
i

d

pbest
p

N



　

where dp is the probability of value 1 appearing in d-

dimension. Probability vector P will be updated according to
the case of solution in each generation. In order to maintain
the diversity of particles and keep particles effective
convergence, learning parameter  can be set, and
generating rules of probability vector P are as follows:

(4) 1(1)

n

id
i

d d

pbest
p p

N
    


　

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1b/2013 229

 where (0,1]  is learning parameter. ED-PSO algorithm

process is shown in Fig.1.

Fig.1. ED-PSO algorithm flowchart

It can be seen from Figure.1. that ED-PSO algorithm is
different from traditional EDA. Traditional EDA algorithm
obtains global statistics from previous search results, and
builds a probabilistic model using global statistics. The ED-
PSO inherited this characteristic of traditional EDA
algorithm. In traditional EDA algorithm, global optimal
solution is not used directly in subsequent search, while in
ED-PSO, the global optimal solution is directly used.
Therefore, particles can not only access to other particles
historical optimal solution, but also get optimal solution in
the group. Traditional PSO algorithm does not have such
advantages.

Multidimensional Knapsack Problem
 Multidimensional Knapsack Problem is the expansion

of 0-1 knapsack problem. Assuming there are n items, the

value of item j is 0jp  , and there are m resources and

constraint 0ib  , the amount of resources consumed i of

term j is 0ijw  . Variable jx is 0 means item j not putting

into package, jx is 1 means item j putting into package.

Multidimensional Knapsack Problem (MKP) can be
described by the following expression:

（5）
1

n

j j
j

Maximize p x



（6）
1

, 1, ,
n

ij j j
j

Subject to w x b i m


  　 　
)

（7） (0,1), 1, ,jx j n  
()(()) Multidimensional Knapsack Problem is a combination

NP-hard problem. Theoretically combination used can be
enumerated to solve, but there will be a combinatorial
explosion problem. Therefore, it is necessary to reduce
search space through computing evolutionary methods in
order to let Multidimensional Knapsack Problem get optimal
solution in limited time and space.

ED-PSO applied to Multidimensional Knapsack Problem
Implementation Methods Set N objects and M

backpacks in MKP, each backpack has a maximum

capacity (1, ,)jc j m  . Load conditions of backpack are

represented by a vector (1, ,)ix i n  . Load the object

when ix is 1, not load the object when ix is 0. Each object

has a value (1, ,)ip i n  and a weight ijw . The goal of

MKP is to maximize total value of objects in backpack in the
case of not exceeding the backpack capacity.

 Therefore, when implemented, there is a vector number
[DIMENSION] in each particle’s data structure representing
the object selection. In this way, each particle is a solution
of the knapsack problem. The length of vector
number[DIMENSION] equals to the number of objects N to
be equivalent to search in N-dimension space. Vector
shown as (8):

(8) 1 2[, , ...,]nnumber x x x

However, this search may produce infeasible solutions
that solution may be in violation of the knapsack
constraints, shaped like:

(9)
1

[] , 1, ,
n

ij j
j

w number j c i m


   　

 In this case, infeasible solutions should be repaired.
Repairing method is according to pseudo-utility ratios u, and
use greedy algorithm to repair the infeasible solutions.
Pseudo utility ratio is similar to the value density of single
knapsack problem. In a single knapsack problem the value

of density of Item j is equal to the ratio of item value jp and

resources that item occupied jw , /j jp w .The greater the

value density, the better the item, the greater the possibility
to be selected. For Multidimensional Knapsack Problem,
the most simple pseudo utility ratio is derived from the value
density of the single knapsack problem, i.e. the ratio of
value of the item j, and the sum of resources item occupied

according to different constraints
1

m

iji
r

 ,

1
/

m

j iji
p r

 .Repairing operator is as follows:

(10)
1

j
j m

i i ji

p
u

r w





(11)
1

1

n

ij i
j

j n

ij
j

w c

r
w











After u is obtained, u is sorted in descending sequence.
Repairing operator considers whether to remove the item or
join it in on the basis of the value of u. First operation
(remove): If the new individual is an infeasible solution or
the same individual is existed in the current population, then
remove items with smallest value from the package. If the
individual is an infeasible solution or the same individual is
existed in the current population, then repeat this operation
until it is a feasible solution and no same individual is in
current population. Second operation (join): after getting the
feasible solution from first step, consider all the items that
are not in the package according to u value in descending
sequence. Looking for the existence of such items that the
individual is still a feasible solution and there is no same
individual in current population when it is added in package.
If existed, then add it in.

Fitness Function and Parameter Setting Due to the
special nature of the knapsack problem, define the fitness

function as
1

()
n

i i
i

f X p x


  , where tp is the value of each

item. When 1ix  the item is selected, and 0ix  shows

that the item is not selected. The choice of backpack

satisfies
1

n

i i
i

w x C


 , where iw is the weight of each item,

Yes

Initialization of population

Update local best solution and global best solution

Estimation of distribution of all Local best solutions

Sample from estimation of distribution and learning
from global best solution

New population

Stop
N0

230 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1b/2013

C is the upper limit of each resource. The randomly

selected parameter  is set to be 0.95 [5] in the experiment.
UMD Algorithm UMD algorithm probability model is

used in the experiment. The UMD algorithm is proposed by
German scholar Muhlenbein in 1996. The UMD algorithm
process is described as follows [3,6].

.

Operation and Test
Test Cases The test case selected more than 270

multidimensional knapsack problems provided by Beasley
and Chu. Constraint number DIMENSION includes 5, 10
and 30, the Item Quantity BAGNUMBER includes the 100,
250 and 500, each group DIMENSION-BAGNUMBER has
30 issues. The generating methods of these 270 cases are
as follows:

The amount of resource i consumed by item j, is an
integer uniformly distributed in the interval (0, 1000). For
every combination of DIMENSION-BAGNUMBER, each

resource constraints
1

n

i ijj
b w


  ,  is the issue close

ratio,  of first ten issues is 0.25,  of next ten issues is
0.50, and  of last ten issues is 0.75. The item value p has

relationship with,
1

/ 500 , 1, ...,
m

j ij ii
p w m q j n


   .

iq is a randomly generated real number in the range (0,1).

Calculation Results and Analysis Since the optimal
solutions of many problems are not known, the value of
100(relaxation LP optimal solution - optimal solution
derived) / (relaxation LP optimal solution) is used to assess
solutions, denoted as % gap. Obviously, the smaller the %
gap, the closer the solution approaching optimal solution.

ED-PSO Calculation Time Statistics When testing,
the size of particle swarm POPSIZE is set to be 50,
randomly run 50 times, each time 500 generations is run.
Table 1. is come up depending on the computing time of
MKP by different DIMENSION, BAGNUMBER and . From
Table 1., the optimal solution of MKP can be found
efficiently by using ED-PSO algorithm. With the increasing
size of problem, advantages of ED-PSO algorithm are
manifested better.

Where DMENSION is the number of items,
BAGNUMBER is the number of backpack, that is, the
number of constraints.  is the problem close ratio, a.z.t is
the average time spent in ED-PSO finding the best solution,
a.s.t is the average time in ED-PSO calculating, other form
parameters are the same as Table 1.

Table 1. MKP Calculation Time Tables (unit: seconds)

Problem
a.z.t a.s.t

DIMENSION BAGNUMBER 

5 100 0.25 7.21 132.77
 0.50 11.35 130.73
 0.75 4.27 122.34

5 250 0.25 116.82 281.88
 0.50 166.93 278.68
 0.75 142.31 301.20

10 100 0.25 16.17 118.97
 0.50 22.21 112.86
 0.75 7.69 124.34

5 500 0.25 437.11 567.13
 0.50 303.19 491.49
 0.75 367.55 619.86

10 250 0.25 138.52 283.87
 0.50 137.32 286.30
 0.75 135.36 273.81

10 500 0.25 292.00 527.55

0.50 279.38 431.66
0.75 334.12 509.03

30 100 0.25 32.92 132.79
0.50 43.50 160.10
0.75 22.45 141.25

30 250 0.25 164.45 323.35
0.50 207.43 331.13
0.75 110.25 334.17

30 500 0.25 395.86 557.04
0.50 380.26 607.81
0.75 387.51 612.07

Total Average Value 172.84 325.93

ED-PSO and PSO
Table 2. compares results of ED-PSO algorithm and

PSO algorithm.As can be seen from Table 2., cases with
number of items n less than 500 are solved, ED-PSO is
slightly better than PSO. Since case 5-100 is of relatively
small size, ED-PSO and PSO both can find all the optimal
solutions; for cases 5-250 and 10-100, ED-PSO find more
optimal solutions than PSO, superior to PSO; for other three
cases, although it cannot be determined that what ED-PSO
find is optimal solution, but it can be seen from the
comparison of % gap, %gap of ED-PSO is less than %gap
of PSO, means ED-PSO solution is closer to the optimal
solution. For solving the three cases with number of items n
is 500, ED-PSO is inferior to PSO, especially case 30-500,
the gap between ED-PSO and PSO is relatively larger than
other cases, for case 5-500 the average % gap of ED-PSO
is slightly higher than PSO, but for case 10-500, average %
gap of ED-PSO and PSO are the same.

In summary, ED-PSO is slightly superior to PSO in
solving large-scale knapsack problem, but for ultra-large-
scale knapsack problem, the performance of MKPGA is not
as good as PSO. Though average %gap of ED-PSO is
0.002 larger than that of PSO, in some cases solving, ED-
PSO can find better solutions than PSO, just slightly inferior
to PSO in solving cases with 500 item numbers. It is can be
said that the overall performance of ED-PSO is basically the
same as that of PSO. n/k represents solutions which cannot
be determined be the optimal solutions (the following the
same).

Table2: Comparison Table of ED-PSO and PSO Calculation
Results

Problem PSO ED-PSO

Size
NO. of

packages


Average

%gap

NO. of

Optimal

Solutions

Average

%gap

NO. of

Optimal

Solutions

5 100 0.25 0.979 10 0.990 10
0.50 0.451 10 0.452 10
0.75 0.358 10 0.319 10

Average 0.596 0.587

5 250 0.25 0.227 8 0.226 9
0.50 0.126 5 0.113 6
0.75 0.089 5 0.077 9

Average 0.141 0.138

10 100 0.25 1.562 10 1.563 10
0.50 0.755 9 0.791 10
0.75 0.482 10 0.482 10

Average 0.956 0.946

5 500 0.25 0.084 n/k 0.092 n/k
0.50 0.042 n/k 0.043 n/k
0.75 0.024 n/k 0.027 n/k

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1b/2013 231

Average 0.051 0.054

10 250 0.25 0.501 n/k 0.491 n/k
 0.50 0.252 n/k 0.237 n/k
 0.75 0.153 n/k 0.149 n/k

Average 0.301 0.293

10 500 0.25 0.228 n/k 0.225 n/k
 0.50 0.105 n/k 0.111 n/k
 0.75 0.073 n/k 0.069 n/k

Average 0.136 0.136

30 100 0.25 2.915 n/k 2.914 n/k
 0.50 1.342 n/k 1.331 n/k
 0.75 0.829 n/k 0.829 n/k

Average 1.696 1.692

30 250 0.25 1.179 n/k 1.166 n/k
 0.50 0.521 n/k 0.518 n/k
 0.75 0.305 n/k 0.302 n/k

Average 0.669 0.663

30 500 0.25 0.613 n/k 0.689 n/k
 0.50 0.264 n/k 0.299 n/k
 0.75 0.166 n/k 0.174 n/k

Average 0.348 0.388

Total Average 0.542 0.545

Comparing ED-PSO with Other Heuristic Algorithms
Table 3. is a comparison of ED-PSO with other heuristic
algorithms, where M&Q (Magazine and Oguz), V&Z
(Volgenant and Zoon) [7,8,9].

Table 3. Comparison Table of ED-PSO with Other Heuristic
Algorithm Calculation Results

DIMENSION BAGNUMBER  M&O V&Z ED-

5 100 0.25 13.69 10.30 0.989
 0.50 6.71 6.90 0.451
 0.75 5.11 5.68 0.318

Average 8.50 7.63 0.586

5 250 0.25 6.64 5.85 0.225
 0.50 5.22 4.40 0.113
 0.75 3.56 3.59 0.077

Average 5.14 4.61 0.138

5 500 0.25 4.39 4.11 0.092
 0.50 2.96 2.53 0.043
 0.75 2.31 2.41 0.027

Average 3.40 3.02 0.054

10 100 0.25 15.88 15.55 1.562
 0.50 10.41 10.72 0.791
 0.75 6.07 5.67 0.482

Average 10.79 10.65 0.945

10 250 0.25 11.73 10.53 0.491
 0.50 6.83 5.92 0.237
 0.75 4.42 3.77 0.149

Average 7.66 6.74 0.292

From Table 3., ED-PSO algorithm is more efficient than
other heuristic algorithms in solving the Multidimensional
Knapsack Problem.

Conclusion
The ED-PSO algorithm used in experiment effectively

combine Estimation of Distribution Algorithm and Particle
Swarm Optimization to form a hybrid discrete particle
swarm algorithm (ED-PSO). This algorithm can effectively
solve combinatorial optimization problems. ED-PSO
algorithm can combine global statistics and global optimal
solution well to effectively solve the NP-hard problem. Use
ED-PSO algorithm to solve the Multidimensional Knapsack
Problem, in order to test the ability to solve problems of ED-
PSO algorithm. The test results show that the ability to
solve problems of ED-PSO algorithm is superior to that of
traditional EDA algorithms, PSO algorithm, as well as
heuristic algorithms. Meanwhile, ED-PSO algorithm using
fewer controlling parameters makes the algorithm more
easily to be achieved and operate more stably. The ED-
PSO algorithm has room for improvement, such as: use
efficient and ordered probability model to build distributed
solution space, as well as use this algorithm to solve more
difficult combinatorial optimization problems.

Acknowledgements
This work was supported by Scientific Research Program of
the Higher Education Institution of XinJiang(No.
XJEDU2010S48).

REFERENCES
[1] Kennedy, J., Eberhart, RC: Particle Swarm Optimization.

Proceedings of IEEE International Conference on Neural
Networks. NJ: Piscataway, (1995) 1942-1948Goguen JA,
Parameterized Programming.IEEE Transactions on Software
Engineering,10(5):528-543,1984.

[2] Zhang Yan etc., Overview of Particle Swarm Optimization and
Its Improved Form, Computer Engineering and Application,
2005,41(2):62-63.

[3] Zhou Shude etc., Overview of Estimation of Distribution
Algorithms, AAS, 2007,33(2):113-124.

[4] Fernanda Hembecker, Particle Swarm Optimization for the
Multidimensional Knapsack Problem, Federal University of
Technology Parana (UTFPR), 2001

[5] Pelikan, M., Goldberg, DE, Lobo, F.: A Survey Of Optimization
by Building and Using Probabilistic Models.IlliGAL Technical
Report 99018,1999

[6] Cai Zixing, Artificial Intelligence and Its Applications: Graduate
Book (third edition), Tsinghua University Press, 2005

[7] Ma Shaoping, Artificial Iintelligence, Tsinghua University Press,
2006

[8] PCChu and JEBeasley, A Genetic Algorithm for the
Multidimensional Knapsack Problem, Journal of Heuristics,
1999,4:63-86

[9] Krzysztof Socha, Marco Dorigo. Ant colony optimization for
continuous domains. European Journal of Operational
Research (S0377-2217). 2008, 185(3): 1155-1173.

Authors
LIU Wen, since 2011, he is a PhD student in the School of
Computer Science and Technology Dalian University of
Technology,mainly researching in the field of Computer Application
Technology.
Address: Dept.of Electrical Engineering,Institute of XinJinag
Mechano-Electrical Vocational and Technical,Tianjin Road, No.
176, Urumqi,China 830011.E-mail:627952@qq.com.
TEL:86 13899918616.

