
228                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1b/2013 

LIU Wen1,2 

The School of Computer Science and Technology Dalian University of Technology Dalian,China.(1) 
Dept.of Electrical Engineering,Institute of XinJinag Mechano-Electrical Vocational and Technical,Urumqi,China.(2) 

 
 

Hybrid Particle Swarm Algorithm for Solving Multidimensional 
Knapsack Problem 

 
 

Abstract: In order to effectively solve combinatorial optimization problems, the Estimation of Distribution Algorithm (EDA) and Particle Swarm 
Optimization (PSO) combine to form a new ED-PSO hybrid algorithm, the algorithm can effectively apply global statistical information and global 
optimal solution to the solution space search. This algorithm is used to solve the Multidimensional Knapsack Problem (MKP). Experimental results 
show that when solving multidimensional knapsack problem, ED-PSO algorithm is superior to traditional PSO algorithm, and also better than many 
heuristic intelligent algorithm. Meanwhile, ED-PSO algorithm uses fewer parameters, and therefore easier to be implemented, and run more stable. 
 
Streszczenie. W artykule przedstawiono wykorzystanie algorytmu hybrydowego ED-PSO do rozwiązania wielowymiarowego problem Knapsacka 
(ang. MKP). Zastosowano tu optymalizację roju cząstek (ang. PSO) oraz algorytmu estymacji EDA. Wyniki eksperymentalne pokazują, że w 
przypadku MKP proponowany algorytm wykazuje znacznie lepsze możliwości niż klasyczny PSO. Dodatkowo ED-PSO ma mniej parametrów, przez 
co jest łatwiejszy w implementacji.  (Hybrydowy algorytm roju cząstek w rozwiązywaniu wielowymiarowego problemu Knapsacka). 
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Słowa kluczowe: Hybrydowa optymalizacja roju cząstek, algorytm estymacji rozkładu, wielowymiarowy problem Knapsacka. 
 
 

Introduction 
Particle Swarm Optimization (PSO) is based on the 

iterative optimization algorithm, an optimization algorithm 
based on swarm intelligence developed in 1995 by 
Kennedy, Eberhart and etc., behavioral studies derived 
from artificial life and birds’ predation[1]. Due to fast 
convergence and low parameter settings of this algorithm, it 
has received extensive academic attention in recent years, 
and has become an important optimization tool, and has 
been widely applied in function optimization, neural network 
training, pattern classification and other engineering fields. 
Standard PSO algorithm principle is that each particle 
continuously learns individual experience and the best 
individual experience of groups; the idea of Estimation of 
Distribution Algorithm is to generate new solutions based on 
information probability distribution model of current quality 
solutions information in each iteration [1,2]. In this paper, 
these two algorithms are combined to form ED-PSO hybrid 
algorithm, and using this algorithm to solve the 
Multidimensional Knapsack Problem (MKP). And prove the 
validity of solving MKP problem using ED-PSO algorithm by 
means of experiments. Simulation results show that ED-
PSO algorithm has stronger solving abilities than traditional 
EDA algorithms, PSO algorithm, and a heuristic algorithm.  
 

Particle Swarm Optimization 
The basis of PSO algorithm is developed through 

people’s observation of animal social behavior. The initial 
version of PSO is formed by adding neighboring speed 
matching, eliminating unnecessary variables, and 
considering multi-dimensional search as well as 
acceleration based on distance.  
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 w is the inertia weight,c1 c2 are accelerate constants, 
rand() and Rand() are two random functions changing in the 
range of [0,1][1] 
 

Estimation of Distribution Algorithm (EDA) Based on 
different probability model  

Estimation of Distribution Algorithms is an evolutionary 
algorithm based on probabilistic models[2]. It can describe 
relationship between variables using probabilistic model, so 
problems that are difficult to be solved using traditional 
genetic algorithm can be solved. In the field of EDA 
research, the simplest case is that there is no relationship 

between variables. In this case, distribution of solutions can 
be generally represented by a simple probability vector. Set 
the problem to be solved as an n-dimensional problem, 
each variable is a binary value, variable independence 
makes the probability of any solution can be expressed as 
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ED-PSO hybrid algorithm 
In this algorithm, define a particle swarm, N is the total 

number of particles in the space, denoted by 

1( ) ( ( ), ( ), , ( )), ( ) {0,1}i i id iD idX t x t x t x t x t   indicating 

the value of i-th particle in the t-th generation, D-th 

dimension, ( )idx t  as a candidate solution. When algorithm 

is working, firstly identify UMD model in space of particle 
swarm, then base on collected advantage solution set to 
build a distribution estimated space. UMD uses probability 
vector 1( , , , , )d DP p p p   to build estimation of 

distribution space in the search space, which dp represents 

a probability when 1 appears in d-dimension. The search 

method of probability vector 1( , , , , )d DP p p p    to 

guide particles in 0-1 solution space is as follows (i.e. guide 
to generate particle of next generation) [3]: 

rand() <  If < dp , set ( 1) 1idx t   , otherwise set 

( 1) 0;idx t   Otherwise ( 1) ( ).id dx t gbest t   

where   is control parameter used to control probability 
vector P to randomly grow.Probability vector is generated 
according to the following rules[4]: 
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where dp  is the probability of value 1 appearing in d-

dimension. Probability vector P will be updated according to 
the case of solution in each generation. In order to maintain 
the diversity of particles and keep particles effective 
convergence, learning parameter   can be set, and 
generating rules of probability vector P are as follows: 
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 where (0,1]  is learning parameter. ED-PSO algorithm 

process is shown in Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. ED-PSO algorithm flowchart 
 

It can be seen from Figure.1. that ED-PSO algorithm is 
different from traditional EDA. Traditional EDA algorithm 
obtains global statistics from previous search results, and 
builds a probabilistic model using global statistics. The ED-
PSO inherited this characteristic of traditional EDA 
algorithm. In traditional EDA algorithm, global optimal 
solution is not used directly in subsequent search, while in 
ED-PSO, the global optimal solution is directly used. 
Therefore, particles can not only access to other particles 
historical optimal solution, but also get optimal solution in 
the group. Traditional PSO algorithm does not have such 
advantages. 

Multidimensional Knapsack Problem 
   Multidimensional Knapsack Problem is the expansion 

of 0-1 knapsack problem. Assuming there are n items, the 

value of item j is 0jp  , and there are m resources and 

constraint 0ib  , the amount of resources consumed i of 

term j is 0ijw  . Variable jx  is 0 means item j not putting 

into package, jx is 1 means item j putting into package. 

Multidimensional Knapsack Problem (MKP) can be 
described by the following expression: 

（5）       
1

n

j j
j

Maximize p x

           

（6）       
1

, 1, ,
n

ij j j
j

Subject to w x b i m


  　 　
) 
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()(()            )   Multidimensional Knapsack Problem is a combination 

NP-hard problem. Theoretically combination used can be 
enumerated to solve, but there will be a combinatorial 
explosion problem. Therefore, it is necessary to reduce 
search space through computing evolutionary methods in 
order to let Multidimensional Knapsack Problem get optimal 
solution in limited time and space. 

ED-PSO applied to Multidimensional Knapsack Problem 
Implementation Methods  Set N objects and M 

backpacks in MKP, each backpack has a maximum 

capacity ( 1, , )jc j m  . Load conditions of backpack are 

represented by a vector ( 1, , )ix i n  . Load the object 

when ix is 1, not load the object when ix is 0. Each object 

has a value ( 1, , )ip i n  and a weight ijw . The goal of 

MKP is to maximize total value of objects in backpack in the 
case of not exceeding the backpack capacity. 

 Therefore, when implemented, there is a vector number 
[DIMENSION] in each particle’s data structure representing 
the object selection. In this way, each particle is a solution 
of the knapsack problem. The length of vector 
number[DIMENSION] equals to the number of objects N to 
be equivalent to search in N-dimension space. Vector 
shown as (8): 
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However, this search may produce infeasible solutions 
that solution may be in violation of the knapsack 
constraints, shaped like: 
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 In this case, infeasible solutions should be repaired. 
Repairing method is according to pseudo-utility ratios u, and 
use greedy algorithm to repair the infeasible solutions. 
Pseudo utility ratio is similar to the value density of single 
knapsack problem. In a single knapsack problem the value 

of density of Item j is equal to the ratio of item value jp  and 

resources that item occupied jw , /j jp w .The greater the 

value density, the better the item, the greater the possibility 
to be selected. For Multidimensional Knapsack Problem, 
the most simple pseudo utility ratio is derived from the value 
density of the single knapsack problem, i.e. the ratio of 
value of the item j,  and the sum of resources item occupied 

according to different constraints
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After u is obtained, u is sorted in descending sequence. 
Repairing operator considers whether to remove the item or 
join it in on the basis of the value of u. First operation 
(remove): If the new individual is an infeasible solution or 
the same individual is existed in the current population, then 
remove items with smallest value from the package. If the 
individual is an infeasible solution or the same individual is 
existed in the current population, then repeat this operation 
until it is a feasible solution and no same individual is in 
current population. Second operation (join): after getting the 
feasible solution from first step, consider all the items that 
are not in the package according to u value in descending 
sequence. Looking for the existence of such items that the 
individual is still a feasible solution and there is no same 
individual in current population when it is added in package. 
If existed, then add it in. 
 

Fitness Function and Parameter Setting  Due to the 
special nature of the knapsack problem, define the fitness 

function as
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item. When 1ix   the item is selected, and 0ix  shows 
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C is the upper limit of each resource. The randomly 

selected parameter  is set to be 0.95 [5] in the experiment. 
UMD Algorithm  UMD algorithm probability model is 

used in the experiment. The UMD algorithm is proposed by 
German scholar Muhlenbein in 1996. The UMD algorithm 
process is described as follows [3,6]. 

. 

Operation and Test 
Test Cases   The test case selected more than 270 

multidimensional knapsack problems provided by Beasley 
and Chu. Constraint number DIMENSION includes 5, 10 
and 30, the Item Quantity BAGNUMBER includes the 100, 
250 and 500, each group DIMENSION-BAGNUMBER has 
30 issues. The generating methods of these 270 cases are 
as follows: 

The amount of resource i consumed by item j,  is an 
integer uniformly distributed in the interval (0, 1000). For 
every combination of DIMENSION-BAGNUMBER, each 

resource constraints
1
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  ,  is the issue close 

ratio,  of first ten issues is 0.25,  of next ten issues is 
0.50, and  of last ten issues is 0.75. The item value p has 

relationship with, 
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iq is a randomly generated real number in the range (0,1). 

Calculation Results and Analysis    Since the optimal 
solutions of many problems are not known, the value of 
100(relaxation LP optimal solution - optimal solution 
derived) / (relaxation LP optimal solution) is used to assess 
solutions, denoted as % gap. Obviously, the smaller the % 
gap, the closer the solution approaching optimal solution. 

ED-PSO Calculation Time Statistics    When testing, 
the size of particle swarm POPSIZE is set to be 50, 
randomly run 50 times, each time 500 generations is run. 
Table 1. is come up depending on the computing time of 
MKP by different DIMENSION, BAGNUMBER and . From 
Table 1., the optimal solution of MKP can be found 
efficiently by using ED-PSO algorithm. With the increasing 
size of problem, advantages of ED-PSO algorithm are 
manifested better. 

Where DMENSION is the number of items, 
BAGNUMBER is the number of backpack, that is, the 
number of constraints.  is the problem close ratio, a.z.t is 
the average time spent in ED-PSO finding the best solution, 
a.s.t is the average time in ED-PSO calculating, other form 
parameters are the same as Table 1. 
 

Table 1. MKP Calculation Time Tables (unit: seconds) 

Problem 
a.z.t a.s.t 

DIMENSION BAGNUMBER   

5 100 0.25 7.21 132.77
  0.50 11.35 130.73
  0.75 4.27 122.34

5 250 0.25 116.82 281.88
  0.50 166.93 278.68
  0.75 142.31 301.20

10 100 0.25 16.17 118.97
  0.50 22.21 112.86
  0.75 7.69 124.34

5 500 0.25 437.11 567.13
  0.50 303.19 491.49
  0.75 367.55 619.86

10 250 0.25 138.52 283.87
  0.50 137.32 286.30
  0.75 135.36 273.81

10 500 0.25 292.00 527.55

0.50 279.38 431.66
0.75 334.12 509.03

30 100 0.25 32.92 132.79
0.50 43.50 160.10
0.75 22.45 141.25

30 250 0.25 164.45 323.35
0.50 207.43 331.13
0.75 110.25 334.17

30 500 0.25 395.86 557.04
0.50 380.26 607.81
0.75 387.51 612.07

Total Average Value  172.84 325.93
 

ED-PSO and PSO 
Table 2. compares results of ED-PSO algorithm and 

PSO algorithm.As can be seen from Table 2., cases with 
number of items n less than 500 are solved, ED-PSO is 
slightly better than PSO. Since case 5-100 is of relatively 
small size, ED-PSO and PSO both can find all the optimal 
solutions; for cases 5-250 and 10-100, ED-PSO find more 
optimal solutions than PSO, superior to PSO; for other three 
cases, although it cannot be determined that what ED-PSO 
find is optimal solution, but it can be seen from the 
comparison of % gap, %gap of ED-PSO is less than %gap 
of PSO, means ED-PSO solution is closer to the optimal 
solution. For solving the three cases with number of items n 
is 500, ED-PSO is inferior to PSO, especially case 30-500, 
the gap between ED-PSO and PSO is relatively larger than 
other cases, for case 5-500 the average % gap of ED-PSO 
is slightly higher than PSO, but for case 10-500, average % 
gap of ED-PSO and PSO are the same. 

In summary, ED-PSO is slightly superior to PSO in 
solving large-scale knapsack problem, but for ultra-large-
scale knapsack problem, the performance of MKPGA is not 
as good as PSO. Though average %gap of ED-PSO is 
0.002 larger than that of PSO, in some cases solving, ED-
PSO can find better solutions than PSO, just slightly inferior 
to PSO in solving cases with 500 item numbers. It is can be 
said that the overall performance of ED-PSO is basically the 
same as that of PSO. n/k represents solutions which cannot 
be determined be the optimal solutions (the following the 
same). 
 

Table2: Comparison Table of ED-PSO and PSO Calculation 
Results  

Problem PSO ED-PSO 

Size 
NO. of 

packages 
  

Average 

%gap 

NO. of 

Optimal 

Solutions 

Average 

%gap 

NO. of 

Optimal 

Solutions 

5 100 0.25 0.979 10 0.990 10
0.50 0.451 10 0.452 10
0.75 0.358 10 0.319 10

Average 0.596  0.587  

5 250 0.25 0.227 8 0.226 9
0.50 0.126 5 0.113 6
0.75 0.089 5 0.077 9

Average 0.141  0.138  

10 100 0.25 1.562 10 1.563 10
0.50 0.755 9 0.791 10
0.75 0.482 10 0.482 10

Average 0.956  0.946  

5 500 0.25 0.084 n/k 0.092 n/k
0.50 0.042 n/k 0.043 n/k
0.75 0.024 n/k 0.027 n/k
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Average 0.051  0.054  

10 250 0.25 0.501 n/k 0.491 n/k
  0.50 0.252 n/k 0.237 n/k
  0.75 0.153 n/k 0.149 n/k

Average 0.301  0.293  

10 500 0.25 0.228 n/k 0.225 n/k
  0.50 0.105 n/k 0.111 n/k
  0.75 0.073 n/k 0.069 n/k

Average 0.136  0.136  

30 100 0.25 2.915 n/k 2.914 n/k
  0.50 1.342 n/k 1.331 n/k
  0.75 0.829 n/k 0.829 n/k

Average 1.696  1.692  

30 250 0.25 1.179 n/k 1.166 n/k
  0.50 0.521 n/k 0.518 n/k
  0.75 0.305 n/k 0.302 n/k

Average 0.669  0.663  

30 500 0.25 0.613 n/k 0.689 n/k
  0.50 0.264 n/k 0.299 n/k
  0.75 0.166 n/k 0.174 n/k

Average 0.348  0.388  

Total Average 0.542  0.545  

 
Comparing ED-PSO with Other Heuristic Algorithms 
Table 3. is a comparison of ED-PSO with other heuristic 
algorithms, where M&Q (Magazine and Oguz), V&Z 
(Volgenant and Zoon) [7,8,9]. 
 

Table 3. Comparison Table of ED-PSO with Other Heuristic 
Algorithm Calculation Results 

DIMENSION BAGNUMBER   M&O V&Z ED-

5 100 0.25 13.69 10.30 0.989
  0.50 6.71 6.90 0.451
  0.75 5.11 5.68 0.318

Average 8.50 7.63 0.586 

5 250 0.25 6.64 5.85 0.225
  0.50 5.22 4.40 0.113
  0.75 3.56 3.59 0.077

Average 5.14 4.61 0.138 

5 500 0.25 4.39 4.11 0.092
  0.50 2.96 2.53 0.043
  0.75 2.31 2.41 0.027

Average 3.40 3.02 0.054 

10 100 0.25 15.88 15.55 1.562
  0.50 10.41 10.72 0.791
  0.75 6.07 5.67 0.482

Average 10.79 10.65 0.945 

10 250 0.25 11.73 10.53 0.491
  0.50 6.83 5.92 0.237
  0.75 4.42 3.77 0.149

Average 7.66 6.74 0.292 

From Table 3., ED-PSO algorithm is more efficient than 
other heuristic algorithms in solving the Multidimensional 
Knapsack Problem. 

Conclusion 
The ED-PSO algorithm used in experiment effectively 

combine Estimation of Distribution Algorithm and Particle 
Swarm Optimization to form a hybrid discrete particle 
swarm algorithm (ED-PSO). This algorithm can effectively 
solve combinatorial optimization problems. ED-PSO 
algorithm can combine global statistics and global optimal 
solution well to effectively solve the NP-hard problem. Use 
ED-PSO algorithm to solve the Multidimensional Knapsack 
Problem, in order to test the ability to solve problems of ED-
PSO algorithm. The test results show that the ability to 
solve problems of ED-PSO algorithm is superior to that of 
traditional EDA algorithms, PSO algorithm, as well as 
heuristic algorithms. Meanwhile, ED-PSO algorithm using 
fewer controlling parameters makes the algorithm more 
easily to be achieved and operate more stably. The ED-
PSO algorithm has room for improvement, such as: use 
efficient and ordered probability model to build distributed 
solution space, as well as use this algorithm to solve more 
difficult combinatorial optimization problems. 
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