
138                                                                            PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1b/2013 

Desheng LI1, Na DENG2 

Anhui Science and Technology University (1), Hubei University of Technology (2) 
 
 

An electoral quantum-behaved PSO with Lévy flights for 
permutation flow shop scheduling problem 

 
 

Abstract. Permutation flow shop scheduling problem (PFSSP), a NP-hard combinatorial optimization problem, has strong engineering background 
of finding the optimal processing sequence and time of jobs on machines under the constraints of resources. Recently, several approaches based on 
Particle Swarm Optimization (PSO) have been developed to solve the PFSSP, and the experimental results show that they are efficient. To solve 
this issue, a novel variant of quantum-behaved particle swarm optimization algorithm for permutation flow shop scheduling is proposed in this paper. 
This algorithm is a combination of quantum-behaved PSO, electoral mechanism, and a disturbance generated by Lévy flights. Inspired by the 
election behavior in society, an electoral and cooperative mechanism is imported to get the elite particles from the primitive sub-swarms respectively. 
Moreover, the character unequal hop length of Lévy flights provides a method to escape the local optima efficiently. The numerical results on the 
Taillard's benchmark also show it outperforms other related algorithms. 
 
Streszczenie: Problem szeregowania zmiany przepływów magazynowych (PFSSP) jest silnie nie–wielomianowym (NP) problemem optymalizacji 
kombinatorycznej. Ma ważny inżynierski aspekt w wyznaczaniu optymalnej kolejności procesu i czasu pracy maszyn, wymuszonej zmianą zasobów. 
Ostatnio, do rozwiązania PFSSP, zastosowano szereg przybliżeń opartych o algorytm optymalizacji rojem cząstek (PSO) a wyniki praktyczne 
pokazują, że są to rozwiązania efektywne. W prezentowanym opracowaniu, do szeregowania przepływów magazynowych, zaproponowano nowy 
wariant algorytmu optymalizacji rojem cząstek z zachowaniem kwantowym (QPSO). Algorytm jest kombinacją QPSO, mechanizmu wyborczego i 
zakłóceń generowanych rozkładem lotów Levy’ego. Do wyłonienia cząstek elitarnych z prymitywnego pod-roju wykorzystano, inspirowany 
zachowaniami wyborczymi w społeczeństwie, mechanizm wyborczy i współpracy. Ponadto, unikalny charakter długości skoków lotów Levy’ego 
pozwala skutecznie uniknąć optimów lokalnych. Wyniki numeryczne, przeprowadzone na danych testowych Taillard’a, także wskazują na przewagę 
nad innymi porównywalnymi algorytmami. Algorytm wyborczy PSO z kwantowym zachowaniem z lotem Levy’ego do problemu 
szeregowania zmian przepływów magazynowych 
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1. Introduction 

NP-complete combinatorial optimization problems occur 
in many real-world applications, which are believed that 
there exists no polynomial-time algorithm for probing best 
solutions. The flow shop scheduling problem (FSSP) is a 
typical one of these kinds of combinatorial optimization 
problem with a strong engineering background of finding the 
optimal processing sequence and time of jobs on machines 
under the constraints of resources. Among them, 
Permutation FSSP (PFSSP), with an additional constraint 
that all jobs must enter the machines in the same sequence 
order, is also to find a job permutation that minimizes a 
specific performance criterion (such as makespan or total 
flowtime). 

Recently, several approaches based on PSO algorithm 
have been also developed to solve the PFSSP, and the 
experimental results show that they are more efficacious 
than the algorithms based on GA and constructive 
heuristics, such as Gupta [1], Koulamas [2], and NEH [3]. 
However, these algorithms are still suffered from the 
problem of premature convergence and easily trapped into 
local optimum. Moreover, along with the increase of the 
dimension of particle, a problem called the curse of 
dimensionality that refers to various phenomena that arise 
when analyzing and organizing high-dimensional spaces 
would hinder the fast running of PSO program. In order to 
refrain from these shortcomings, some variations of PSO 
are proposed using techniques such as Variable 
Neighborhood Search (VNS) [4], Cooperative Evolution (CE) 
[5] and so forth. In literature [4], a hybrid PSO algorithm was 
proposed based on VNS, which adopted a random key rule 
to construct position of particle mapping to job scheduling. 
B. Yu et al. have developed an improved cooperative 
Particle Swarm Optimization, ICPSO, to solve PFSSP, 
which use both greed and random approaches with a policy 
of synthetically learning method in their research paper [5]. 

Nevertheless, because the PSO could not promise the 
convergence of optimization, so it not always reaches the 
global optima. Thus, some techniques are imported to 

improve its performance, such as Quantum-Behaved 
Particle Swarm Optimization (QPSO) by Sun et al.[6]. The 
iterative equation of QPSO is very different from that of 
PSO. Besides, unlike PSO, QPSO needs no velocity 
vectors for particles, and also has fewer parameters to 
adjust, making it easier to implement. 

In this paper, we will introduce our PSO algorithms 
based on QPSO and CPSO, which not only uses an 
electoral mechanism, but also employs approach to avoid 
premature convergence, i.e., a Lévy flights disturbance. 

 
2. Mathematical formulation of PFSSP 

The PFSSP with makespan minimization is usually 
denoted as | |m maxF prmu C , where m is the number of 

machines, prmu  represents only permutation schedules are 

permitted, and 
maxC  denotes the optimization criterion. 

Compared to the original FSSP, it has smaller search space 

!n  than the ( !)mn  of sequencing jobs in FSSP. 

Firstly, we suppose several notations: A finite set J of n 
jobs 

1{ }n
i iJ 

 to be processed; A finite set M of m machines 

1{ }m
k kM   can perform operations; Each job iJ  consists of m 

operations 
,1 ,2 ,( ), ,...,i i i mO O O ; The parameter 

ikt  denotes 

the processing time of job 
iJ  on machine 

kM ; 
iJ kC denote 

the completion time of job 
iJ on machine 

kM ; 

1 2{ }, ,..., n     denote a permutation of jobs. 

Secondly, we also comply with the following hypotheses: 
All jobs 

iJ  must be processed on every machine in the 

same sequence, given by the indexing of the machines; 

,i kO has to be processed on machine 
kM  for an 

uninterrupted and fixed processing time period, while no 
operation can be preempted; Each machine can process 
only one job and each job can be processed by only one 
machine at a time (capacity constraints). Then the 
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completion time could be calculated as following equations 
(Eq.(1)-Eq.(5)): 
(1)  

1 1,1 ,1C t   

(2)  
1,1 ,1 ,1, 2, ...,

j j j
C C t j n  

    

(3)  
1 1 1, , 1 , , 2, ...,k k kC C t k m      

(4)  1, , , 1 ,{ , } , 2, ..., ,

                                                       2, ...,

j j j jk k k kC max C C t j n

k m

      


 

(5)  ,{ }
nmax mC C   

In our study, the goal is to find the permutation of jobs 
that minimizes the makespan as in Eq.(6). So, the PFSSP 

with the makespan criterion is to find a permutation  
. In 

the set of all permutations   such that 

(6)  
,{ } ,

nmax mC C      
 

3. The proposed algorithm: EQPSO-LF 
3.1 EQPSO: a QPSO with electoral mechanism 

The electoral mechanism is on the basis of the multi-
swarm and cooperative variants of PSO, Cooperative 

Particle Swarm Optimization (CPSO) proposed by Van den 
Bergh F. in [7], in which the high-dimension search space 
can be decompose into small scale ones similar to the idea  
of RELAX/CLEAN algorithm. However, its difference to it is 
that due to the imported information exchange mechanism 
among particles, the more accurate estimates did not need 
reduplicative iterations any more. Compared to basic single 
swarm PSO, both robustness and precision are improved 
and guarantied. The key idea of CPSO is to divide all the n-
dimension vectors into k sub-swarms. So the front n/k 
swarms are /n k   -dimensional, and the ( / )k n k  swarms 

behind have /n k   -dimensional vectors. In each pass of 

iteration, the solution is updated based on k sub-swarms 
rather than the original one. When the particles in one sub-
swarm complete a search along some component, their 
latest best position will be combined with other sub-swarms 
to generate a whole solution. The function b performs 
exactly this: it takes the best particle from each of the other 
sub-swarms, concatenates them, splicing in the current 
particle from the current sub-swarm j in the appropriate 
position.

 

 
Fig.1. Electoral mechanism of ECPSO; 

 
 
The principle of electoral mechanism is depicted in Fig.1, 

in which it can clearly seen that three parts: the local best 
position, the global best position in sub-swarm, and that of 
electoral swarm both take participate in the evaluation of 
fitness function with its own position. Note that the members 
of electoral swarm are voted from the primitive sub-swarms 
with dynamic population during different generation of 
iteration. The function b shown in Eq.(7) performs exactly 
this: it takes the best particle from each of the other sub-
swarms, concatenates them, splicing in the current particle 
from the current sub-swarm j in the appropriate position. 
According to this function, the composition of best

idP , best
gdP  

and best
gdP


 can be calculated based on Eq.(8)-Eq.(9). 

Particles in each sub-swarm update their latest best 
positions according to Eq.(8), while the latest global best 
positions of each sub-swarm are renovated by Eq.(9), 
where Si denotes the i-th sub-swarm. 

(7)  1 1 1( , ) ( . ,..., . , , . ,..., . ),  

                                                                         1

best best best best
gid u gid u gid k gidb u Z S P S P Z S P S P

u k

 

 
 

(8)  ( , . )  ( ( , . ), ( , . )),

                                                                          1

best best
u id u id u idb u S P argmin fitness b u S P b u S P

u k


 

 

(9)  ( , . )  ( ( , . )),

                                                        1 ,1

best
u gd u idb u S P argmin fitness b u S P

id s u k



   
 

In our algorithm, an electoral swarm is generated by the 
voting of primitive sub-swarms and also participates in 
evolution of swarm, whose candidate particles come from 
primitive sub-swarms with variable votes. In reverse, the 
number of selected particles could also impact the voting of 

the primitive sub-swarms, such as the total number of 
candidates and quota of selected ones. The selected 
candidates could share their components with best 
segments of position, which are then being composed into a 
new particle position to participate in the combining of 
positions. Like the treatment in our previous work [8], a new 
component of particle’s position is also imported, i.e., best

edP , 

denoting the electoral best position composed by the 
dimensions of elected candidates. Recall that the local 
attractor in original quantum-behaved PSO can be written 

1 1 2 2 1 1 2 2( ) / ( )id id gdP c r P c r P c r c r  


. After employing an 

electoral best position, it could be augmented into 
(10) 

1 1 2 2 3 3 1 1 2 2 3 3( ) / ( )best best best
id id gd edP c r P c r P c r P c r c r c r    
  .  

So the new local attract position could be written as follows: 
(11) ' (1 )best best best

id id gd edP P P P          
 

.  

where 
1 1 1 1 2 2 3 3/ ( )c r c r c r c r    ,

2 2 1 1 2 2 3 3/ ( )c r c r c r c r    . 
Due to the employment of this component, the particles 

in each sub-swarm therefore update their global best 
position by Eq.(12), which is the result associated with 
minimal fitness value of their local best positions and global 
best positions of electoral swarm. 

(12) ( , . )  ( ( , . ), ( , .

                                       )),  1 ,1

best best
u gd u id u

best
ed

b u S P argmin fitness b u S P b u S

P id s u k



   


 

 

3.2 Lévy flights disturbance in EQPSO 
The technique of random disturbance is often imported 

to improve the performance of PSO or QPSO. When QPSO 
was proposed, the Gaussian and Cauchy probability 
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distribution disturbance have been used to avoid premature 
convergence. In [9], the random sequences in QPSO were 
generated using the absolute value of the Gaussian 
probability distribution with zero mean and unit variance. 
Based on the characteristic of QPSO, the variables of the 
global best and mean best positions are mutated with 
Cauchy distribution, and an adaptive QPSO version was 
proposed in [10]. 

In this paper, another random method, Lévy flights, is 
employed to do this work. Lévy flights, named after the 
French mathematician Paul Pierre Lévy, are Markov 
processes. After a large number of steps, the distance from 
the origin of the random walk tends to a stable distribution. 
In general, Lévy flights are a kind of random walk whose 
step lengths meet a heavy-tailed Lévy alpha-stable 
distribution, often in terms of a power-law formula: 
(13) 1( ) ~| |L s s   .  
where 0<β≤2 is an index. A typical version of Lévy 
distribution can be defined as [11]. 

(14) 3/2

1
[ ] ,

2 2( ) ( )
( , , )

                           0 ;

0, 0.

exp
s s

L s
s

s

 
  

 



   

   
 

.  

As the change of β, this can evolve into one of Lévy 
distribution, normal distribution and Cauchy distribution. 
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Fig.2. Step lengths of 500 random walks in Lévy flights; 
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Fig.3. Angle values of 500 random turns in Lévy flights; 
 

Taking the 2D-Lévy flights for instance, the steps 
following a Lévy distribution as in Fig.2, while the directions 
of its movements meet an uniform distribution as in Fig.3. 
As shown in Fig.4, an instance of the trajectory of 500 steps 
of random walks obeying a Lévy distribution. Note that the 
Lévy flights are often efficient in exploring unknown and 
large-scale search space than Brownian walks. One reason 
for this argument is that the variance of Lévy flights 

2 3( ) ~ ,1 2t t      increases faster than that of Brownian 

random walks, i.e., 2 ( ) ~t t . Also, compared to Gaussian 

distribution, Lévy distribution is advantageous since the 
probability of returning to a previously visited site is smaller 
than for a Gaussian distribution, irrespective of the value of 
μ chosen. 
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Fig.4. 2D Lévy flights in 500 steps; 

 

From the update strategy of EQPSO-LF, we can draw a 
conclusion that all particles in EQPSO-LF will converge to a 
common point, leaving the diversity of the population 
extremely low and particles stagnated without further 
search before the iterations is over. To overcome the 
problem, we exert a disturbance generated by Lévy flights 
on the mean best position, global best position and electoral 
best position when the swarm is evolving as shown in the 
following Eq.(15)-Eq.(17). To the local attractor, the hop 
steps in Lévy flights promise the random travelsal in the 
search space. However, to the global and electoral best 
location, they only need a slightly disturbance, i.e., the 
angles meet an uniform distribution, to exploit the particles 
nearby. 
(15) '

d dC C step  .  

(16) '
1

best best
gd gdP P angle  
  .  

(17) '
2

best best
ed edP P angle  
 

.  

where 1 , 2  is a pre-specified parameter, step is a 

number in a sequence by Lévy flights, angle is the angles of 
directions in Lévy flights. 
(18) ' '| | (1/ )id id d idP P C P ln u    


.  

(19) ' '(1 )best best best
id id gd edP P P P          
  .  

 

3.3 Main steps  
After discussing each component, we can now present 

the proposed EQPSO-LF algorithm in the following steps: 
Algorithm 1: EQPSO-LF 
Initiation; 
Label 1: Generation primitive sub-swarms; 
Foreach sub-swarm-i In sub-swarms Do 

Calculate the fitness value of makespan; 
If (run==firsttime) 
Then Update the personal and global optimal position 

as in QPSO; 
Else Update the personal and global optimal position 

with Eq.(11); 
Calculate the best particles; 
Compute the quota and votes of sub-swarm-i; 

End Foreach 
Generate the electoral swarm according to quota and votes; 
Calculate the fitness value of makespan; 
Foreach dimension-i In D Do 
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Update the personal and global optimal position by 
Eq.(18)-Eq.(19); 

Update the particles based on quantum behavior with 
the Lévy disturbance by Eq.(15)-Eq.(16); 

Calculate the best component of dimension-i of the 
electoral swarm; 

End Foreach 
Calculate the electoral best position according to Eq.(17); 
Test whether satisfy the condition of termination; 
If (Meet terminal condition) Then ends 
Else repeat from Label 1; 
End If 
End. 

 

4. Computational Results 
4.1 Analysis of the diversities 

Both the electoral mechanism and the disturbance 
generated by Lévy flights can diversify the population as an 
overall result achieved by diversification of the local 
attractor points. Herein we use a diversity measure to 
analyze the diversity changes of local attractor points in 
QPSO and EQPSO-LF shown in Eq.(20). In addition, the 
diversity measure for D-dimensional numerical problems is 
the "distanceto-averagepoint" measure defined as [13]. 

(20) 2

1 1

1
( ) ( )

M D

ij j
i j

diversity p p p
M  

    .  

where M is the population size, D is the dimensionality 
of the problem, 

ijP is the jth value of the ith individual, and 

jP  is the jth value of the average point. This diversity 

measure is dependent on swarm size, the dimensionality of 
the problem as well as the search range in each dimension. 
Low population diversity indicates that the swarm has 
clustered in a small region. Conversely, high population 
diversity indicates that the swarm has scattered in a wide 
region. Low population diversity is always taken the blame 
for the local convergence. However, high diversity may 
cause the algorithm not to converge. Thereupon the 
diversity should be considered together with the problem 
and the search process of the algorithm. The comparison of 
diversities between QPSO and EQPSO-LF is shown in 
Fig.5. From it, we can see the diversity in the latter is 
enhanced remarkablely than the original QPSO. 

 
Fig.5. Diversities of 500 iterations with QPSO and EQPSO-LF; 

 
4.2 Results on Taillard benchmark  

In this section, an analysis of the results acquired on the 
Taillard [15] benchmark suite are provided (the detailed 

results acquired for each of the 18 typical Taillard instances 
run are presented in Table 1, of which the solution quality is 
mainly measured in terms of the relative increase in 
makespan with respect to the best known solutions. Each 
instance was run 10 consecutive times and both deviations 
of the best and average makespan achieved are calculated 
(Min, Max and Avg), respectively. From Table 1, we can 
clearly get that the proposed EQPSO-LF algorithm 
performed greatly better than the plain PSO/QPSO 
algorithm. Also, compared to the basic Cooperative PSO 
(CPSO), Cooperative QPSO (CQPSO), the convergence 
property has been enhanced by the proposed techniques in 
the paper. Moreover, another interesting result is that 
although the EQPSO-LF has improved the quality of 
solution to a certain extent, but the ability to probe the best 
solution(denoted as BKS-Best Known Solution) is the same 
with CPSO and ICPSO. 

Fig.6 illustrate the typical convergences of PSO, CPSO, 
ICPSO, QPSO, CQPSO and EQPSO-LF in Taillard’s 
benchmark suite, in which Fig.6 (a)-(b) illustrate the TA090 
and TA100 instances respectively. From these figures, it 
can be seen that the varying curves of objective values 
using the family of Cooperative PSO/QPSO descend much 
faster than using plain PSO. In addition, the fitness values 
descent to lower level by using EQPSO-LF than 
Cooperative PSO/QPSO due to the different algorithmic 
mechanism. The results of the experiments indicated that 
the proposed EQPSO-LF can lead to more efficiency and 
stability than plain PSO/QPSO, and Cooperative PSO/ 
QPSO. 
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(b) 
Fig.6. Evolution curves of the optimal solutions for PSO, CPSO, 
ICPSO, QPSO, CQPSO and EQPSO-LF algorithm. (a) TA090, (b) 
TA100; 
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5. Conclusions 
In this paper, a variant of QPSO, EQPSO-LF, is 

presented for minimizing the makespan in permutation 
flowshop scheduling problem. Inspired by the election 
behavior in society, an electoral and cooperative 
mechanism is imported to get the elite particles from the 
primitive sub-swarms respectively. Using this mechanism, 
the global optima are easier to find and diversity is also 

increased. Moreover, to help escape from local optima, a 
disturbance generated by Lévy flights is embedded as a 
hybrid strategy. Computational results and comparisons on 
Taillard benchmark also show it outperforms other related  
algorithms. Our future work is to generalize the application 
of the EQPSO-LF algorithm to solve other combinatorial 
problems. 

 
 
Table.1. Results for PFSSP regarding the quality of solutions found in benchmark 

Proble
m BKS 

PSO CPSO QPSO CQPSO EQPSO-LF 
Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave 

TA030 2178 2199 2240 2206.6 2178 2190 2182.4 2190 2240 2208 2178 2240 2198.2 2220 2240 2233.4
TA031 2724 2724 2748 2733.6 2724 2751 2733.1 2752 2827 2776 2724 2752 2735.4 2724 2748 2730 
TA035 2863 2864 2887 2868.6 2863 2864 2863.8 2922 2966 2939.2 2863 2922 2878 2863 2922 2901.2
TA040 2782 2783 2817 2789.7 2782 2814 2787.7 2800 2907 2838.4 2800 2814 2808.8 2783 2817 2804.8
TA041 2991 3092 3209 3144.2 3061 3141 3105.3 3261 3431 3361 3092 3135 3129.2 3126 3261 3214 
TA045 2976 3092 3209 3144.2 3061 3141 3105.3 3306 3417 3350 3126 3160 3145 3094 3160 3123.2
TA050 3065 3166 3257 3211.7 3132 3212 3162.1 3389 3500 3430.8 3132 3257 3198.4 3187 3389 3256.3
TA051 3850 4016 4125 4059.1 3971 4105 4033.7 4310 4446 4372.2 4125 4312 4278.1 4093 4125 4104.8
TA055 3610 3847 3948 3892.3 3749 3867 3801.3 4156 4284 4201 3847 3874 3861.2 3874 4156 4031 
TA060 3756 3914 4082 3976.9 3909 4002 3942.9 4261 4412 4314 3909 4082 4011.4 3915 4079 4021 
TA061 5493 5495 5533 5507.4 5493 5495 5494.2 5564 5663 5606.2 5505 5550 5527.8 5514 5519 5517.2
TA065 5250 5255 5312 5226.4 5252 5255 5254.1 5352 5461 5406.2 5267 5314 5294 5266 5352 5298.4
TA070 5322 5342 5376 5356 5328 5342 5334.8 5486 5562 5522.2 5348 5392 5375 5341 5348 5345.8
TA071 5770 5900 6037 5962.1 5831 5918 5869 6117 6325 6266.8 6025 6162 6105 6025 6162 6102 
TA075 5467 5641 5778 5712.4 5516 5718 5601.6 5959 6198 6087.6 5768 5954 5855.2 5546 5679 5603.2
TA080 5845 5903 6069 6001.1 5903 5947 5910.2 6192 6302 6260.4 6054 6163 6116.6 5903 5918 5908.4
TA081 6202 6640 6821 6721.6 6505 6700 6560.3 6946 7175 7079.2 6826 7048 6934.4 6502 6541 6534 
TA085 6314 6705 6848 6798.3 6578 6708 6625.5 7102 7198 7141.8 7001 7064 7029.2 6590 6695 6637.2
TA090 6434 6783 6974 6872.1 6645 6760 6706.7 7271 7358 7332.4 7004 7201 7079.2 6580 6783 6669.2
TA091 10862 11448 11584 11515 11293 11544 11478 11380 11564 11468 11211 11293 11262 10986 11544 11238.1
TA095 10524 11386 11447 11416.3 11092 11195 11132 11244 11409 11340.9 11084 11246 11157.6 10645 11244 11014.8
TA100 10675 11436 11555 11478.4 11207 11241 11225 11292 11514 11402.1 11196 11250 11219.2 10807 11292 11124
TA101 11195 12720 12838 12780.2 12427 12561 12509.2 12557 12826 12676.4 12356 12549 12483.4 12356 12549 12407.4
TA105 11259 12839 12975 12909 12473 12598 12541 12643 12871 12745.8 12417 12629 12524 11624 11685 11647.2
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