
94 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1a/2013

Artur SOSNÓWKA1
1West Pomeranian University of Technology, Faculty of Computer Science and Information Technology

Visual analysis for Low Level Test Cases in Test Project

Abstract. Although the majority of software testing in the industry is conducted at the system or acceptance level, most formal research has focused
on the unit level. As a result, system and integration level testing techniques are only described informally. This paper presents general visual
analysis for low level test selection based on inputs from available Test Management system. A presented analysis criterion includes small subset of
test metrics that can be used as a base for further development of the test suites.

Streszczenie. Mimo, iż większość testów w przemyśle przy tworzeniu oprogramowania jest przeprowadzana na poziomie systemu lub testów
użytkownika, formalne badania koncentrują się dotychczas na poziomie Unit-Test. Wynikiem tego jest stosunkowo słaby opis formalny testów
integracyjnych lub systemowych. W artykule tym przeprowadzono ogólną analizę wizualizacyjną opartą na danych pobranych z narzędzi do
zarządzania testami. Zaprezentowane kryteria zawierają zbiór metryk testowych, które mogą byż używane w dalszym procesie rozwoju bazy testów.
(Wizualna analiza testów niskiego poziomu w projekcie testowym).

Keywords: Visualization metaphor, Test City, Test Archaeology, Test metrics, Test case visualization.
Słowa kluczowe: Metafora wizualizacyjna, miasto testów, archeologia testów, metryki testowe, wizualizacja testów.

Introduction
Software development is dealing with growing

complexity, shorter delivery times and current progress
made in the hardware technology. The biggest, however,
not directly seen part of the software lifecycle is the
software maintenance. Increasing number of systems used
in the corporation and tolerated number of deviations is
decreasing when time progressing and users get trusted to
the used software. As soon as software is put in the
production environment, every big change or even a small
adaption of the source code can cause potential danger, in
best case; monetary, in worst; image or even loses of
human being. The maintenance is provided during the
entire period by different groups of technicians or business
partners. This makes the task of understanding,
programming and maintaining the system source code and
its testware more complex and difficult.

A description of the behaviour and possible use cases in
the system to be developed is in a state of constant change
during the whole project and system software lifecycle.
Those changes are based on legal, business, functional, or
software architectural needs (e.g. new programming
techniques). Required new functionality is gaining focus
while the old one is put a side and threated to be not as
important as before. Requirements validation and
verification process is a part of the whole test management
process in which the high (HLTC) and low-level test cases
(LLTC) [4], are focusing, in this case, on old but still valid
functionality. Afford to handle growing number of an old and
new HLTC and LLTC keeps going to be not affordable, or
getting be forgotten by purpose. The situation is causing
raised maintenance costs to the limit, when new
development can produce less costs and even be easier to
implement rather than the creation of a new functionality
within the old system.

Software quality is according to IEEE definition:
1. The degree to which a system, component or

process meets specified requirements.
2. The degree to which a system, component or

process meets customer or user needs or expectations [2].
The above given definition is obligating quality

assurance teams to perform planned and systematic
pattern of actions, and to provide adequate confidence to
the product or item that it conforms to established technical
requirements [2]. Execution of needed actions to provide at
least the same quality during the whole maintenance phase
is a big cost factor. Big and complex systems are providing
a large number of functions and demanding even larger
number of tests. To provide 100% fulfilment, the test team

has to ensure that each single functionality is not affected
through the code adaptation and its side effects. Necessary
actions, and test executions, are provided based on
regression test, which gives an overview of the system
quality after adaptation. The adaptation of the system
causes the demand to adapt an adequate set of tests to
fulfill its requirement for the current system. Adaptations are
performed based on documented change and stored in the
test base, which is maintained with the help of test
management software. Even the best managed test base,
after few years of usage, is not free of tests; which are too
old, obsolete, duplicated or there are no tests for demanded
functionality. Those tests cause additional efforts and are
not providing expected fulfilment for quality needs.
Detection of the problems within a test base can save much
effort and reduce necessary maintenance costs.

Each part of the software development process involves
resources with different budgeting scope, starting from staff,
hardware, software and finalizing on license costs.

According to the software development lifecycle, the
last, longest and most costly part of it is the maintenance.
The prevailing notion is that software is easy and cheap to
change but this is seldom the case. Software maintenance
can account for 60 to 80 per cent of the total life cycle cost
of a system. Most of the expenditures, as much as three
fourths of the total maintenance costs, are for
enhancements to the code, rather than correction of
defects.

Developers and managers believe that a required
change is minor and attempt to accomplish it as a quick fix.
Insufficient planning, design, impact analysis and testing
may lead to increased costs in the future. Over time
successive quick fixes may degrade or obscure the original
design, making modifications more difficult [5] therefore
finishing in not acceptable, resulting in a low quality system.

Two observations lay the foundation for the enlightened
view of testing as an investment. First, like any cost
equation in business, we will want to minimize the cost of
quality. Second, while it is often cheaper to prevent
problems than to repair them, if we must repair problems,
internal failures cost less than external failures, especially
during the maintenance.

There are however projects which cannot afford to
create completely new software and gaining the problems
to get satisfying quality within specific budget. The number
of available LLTC is much bigger than its available
execution time. The projects are coming into the problem to
select proper test cases.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1a/2013 95

Testing in the software development lifecycle
Software development as a process is described in

ISO/IEC 12207:2008 for “Systems and software
engineering – Software life cycle processes" standard [1].
The standard has the main objective of supplying a
common structure so that the buyers, suppliers, developers,
maintainers, operators, managers and technicians involved
in the software development are using a common language
[2].

The primary lifecycle process is divided into five different
main processes involved in software product creation and
covers a very large area; therefore it is necessary to define
a scope in order to differentiate needed details. For detailed
definition of the scope please follow ISO/IEC 12207:2008
[1].

Based on the definition for the primary lifecycle we can
treat the software/programs as an independent, instances
for which testing is a part of each Development, Operation
and Maintenance process.

Understanding of Software Testing mostly consists of
executing test cases for the system undergoing testing and
giving the feedback about working and faulty parts of the
system. The test phase, whether it is called Function Test,
Component Test, Integration Test or Acceptance Test,
consists of 8 generic steps (see Figure 3).

 Fig.1. Test process

Those steps are included in a more general definition as:
• Planning and controlling.
• Documentation review and static analysis (known as
static testing).
• Design and test execution (known as dynamic testing).
• Result checking.
• Reporting on test process and system under test.
• Evaluation of exit criteria.
All of the above mentioned activities are used to improve
both; system being tested, development or testing process
itself.
Testing can have several objectives:
• Finding defects (Error detection).
• Acquire trusting about the quality level.
• Support process of decision-making.
• Avoiding defects [3].
• Validate that what has been specified is actually what
the user wanted.
• Verify that software behaves as specified.

In other words, validation checks to see if we are
building what the customer wants/needs, and verification
checks if we are building that system correctly. Both
verification and validation are necessary, but require
different components testing activity. This is a dynamic
process driven by the system adaptation necessity and
human needs.
The definition of testing according to the (IEEE, 1059-1993 -
IEEE Guide for Software Verification and Validation Plans
[5]) standard is that testing is the process of analysing a
software item to detect the differences between existing and
required conditions (that is defects/errors/bugs) and to
evaluate the features of the software item.

Test metrics
To be able to perform a quantified decision, defined set of
the static and dynamic data of the testware has to be
prepared. Based on the available information for LLTC we
can extract a set of basic test metrics:
• Amount of LLTC
• Execution status for available LLTC
• Last modification date
• Amount of LLTC per Unit/Functionality
• Costs of test planning and preparation
• Costs of test execution, defect tracking, version and
change control.
Dependent on the metrics type, those are to be taken as
data export from the test, defect management tool or even
statistical data. In our approach we are extracting
necessary data from available LLTC testware at User
Acceptance and System Integration level. Available metrics
can be mapped into the chosen visualization metaphor as:
• Data physical properties (colour, geometry, height
mapping, abstract shapes)
• Data granularity (unit cubes, building border or urban
block related)
• Effect of Z axis (height) mappings on the image of the
city
• Abstraction of data is key issue
• Resulting "data compatible" urban models are much
larger than the original VR (Virtual Reality) urban models.

Visualization metaphor

A visualization metaphor is defined as a map
establishing the correspondence between concepts and
objects of the application under test and a system of some
similarities and analogies. This map generates a set of
views and a set of methods for communication with visual
objects in our case - test cases [22].

An important innovation of computers is that they can
transform any media into another. This gives us the
possibility to create a new world of data art that the viewer
will find as interesting. It does not matter if the detail is
important to the author; the translation of raw data into
visual form gives a viewer possibility to get info, which is
most important just for him. Currently, numerous existing
visualization systems are divided into three main classes:
- scientific visualization systems;
- information visualization systems;
- software visualization systems.

Although all visualization systems differ in purposes and
implementation details, they do have something in common;
they manipulate some visual model of the abstract data and
translate this into a concrete graphical representation.

In this paper we are not aiming to present all possible
visualization metaphors, as this is not the focus for our
research. We would like to show a basic and easy to
understand metaphor which is helpful for representation
specific test data.

City metaphor

After some of the previous research work, which is
however not the focus of this paper, we settled our first
attempt to the metaphor which is very widely presented in
[1] and is a part of Phd from Richard Wettel [16]. In its
research and implementation for software, source code
classes are represented as buildings located in city districts,
which in turn represent packages, because of the following
reasons:
- A city, with its downtown area and its suburbs is a
familiar notion with a clear concept of orientation.
- A city, especially a large one, is still an intrinsically,
complex construct and can only be incrementally explored,

96 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1a/2013

in the same way that the understanding of a complex
system increases step by step. Using an all too simple
visual metaphor (such as a large cube or sphere) does not
do justice to the complexity of a software system, and leads
to incorrect oversimplifications: Software is complex; there
is no way around this.
- Classes are the cornerstones of the object-oriented
paradigm, and together with the packages they reside in,
the primary orientation point for developers [16]

Fig.2. Example of “Software City” representation of JBoss
application server

In this paper we discuss an approach to visual analysis
of low-level test cases in order to support the selection of
appropriate LLTCs [4] for a software product or system.

Test selection and test mining

Test case selection is a very important part of the
software test process and development [17] (see Figure 4 -
Strategy). The problem for selecting a small set of tests
from a large test base such that the most defects are
revealed when this subset is executed is occurring at each
stage of the test process, whether in Unit, Interface, System
or Integration Test. Test case prioritization is a problem of
finding an optimal scheduling of the tests in a test suite so
that the number of defects found earlier during testing is
maximized.

Collect information

The importance of information collection for test design
and creation is crucial for further test process steps. At the
first stage it is important to identify and collect all
information needed about the tested Features/Functions.
For both of them the test project is obligated to perform
validation and verification to estimate gained quality.

Fig.3. Test selection process based on requirements analysis

In a large number of test projects, a test analyst, tester

or test manager performs a test case selection manually.
Test selection is based on several decisions criteria’s,
which are experience based. Selection of the correct test
subset is extremely difficult in the case of very large and
long projects where thousands of low and high level tests
exist.

There are researchers, who are trying to address this
problem using profiling, which is looking at the amount of
executed code by used test subset. The other ones (e.g.
Dickinson – [6]) proposed distribution of the profiles with the
profile space by using the cluster analysis on the profiles
[7]. Other authors are using solutions based on Proportional
Sampling Strategy [18], Optimally Refined Proportional
Sampling Strategy [19], Follow-the-Crowd Strategies [20] or
Partial Sums Condition [21].

In this paper we present how useful usage of
visualization is, based on the “Test City” metaphor. We
explain how to perform low-level test case selection, mining
and test reorganization based on the very basic set of
metrics available in the project.

For experimental work we have established a new
system, presented in Figure 5, interacting with several Test
Management applications placed on the market. The base
idea of the system is an automation extraction and pre-
evaluation of several different test metrics. Necessary data
is extracted from the Test Management tool via available
API connection and evaluated to get required set of metrics.
Collected information is stored as a text file, e.g. CSV
(Comma Separated Values), and afterwards imported into a
visualization framework, wherein necessary analysis has
been performed. The analysis result is going to the Test
Management tool as an input for Test-Set creation and
evaluation.

Fig.4. Information exchange in the Test Analyse and

Reorganization System

Within our research for three test projects that contains
over 4000 LLTC each, we have performed analysis for
basic and extended test metrics. The projects have been
running independently in three test projects with a large
number of common requirements. This allows us to gain
lots information that is valuable to prove our concept and
create inputs for further work on possible visualization
usage in test management domain.

In Figure 6 and 8 we present results of our visualization
for the same test project but using different but very basic,
test metrics.

1. Test execution status mapped to the colour.
2. Test execution age  mapped to the height.
3. Number of executions  mapped to size.

Fig.5. Test City based on LLTC for Test Project

The districts (as a square groups) of the Test City are
mapped to the structure available within the Test

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1a/2013 97

Management system (e.g. Test or Test object folders) to
provide real reference to the analysed test base.

Looking at the possible analysis for visualization of the
test base according to the Figure 6, we can provide the
following input for improvements:

1. There are a large number of old LLTC, which has
been not executed or there is no execution status available
(orange – no status, yellow – open, green - success). Those
LLTC shall be adapted, connected to the valid test suite or
moved into archive.

2. In the test base is a large number of LLTC, which
has been executed later than 365 days ago. Those tests
are most likely obsolete and shall be moved to the archive.

3. The number of executions for certain LLTC is very
hard to estimate; based just on the size of the buildings,
therefore closure is needed. Zooming interesting area
(Figure 8 – searched object is marked yellow) we can see
that there are as well a large number of LLTC, which has
never been executed, but still exists in the test base. Those
tests are to be deleted or moved into an archive.

Fig.6. Zooming interesting area of Test City, looking for number of
executions (Childs Count).

The other view (see Figure 8) for the same Test City is
based on other test metrics constellation:

1. Test execution age  mapped to the colour
2. Description length  mapped to the height.
3. Modification age  mapped to size.

Fig.7. Test City 2 based on LLTC for Test Project

Before diving into details, the first impression we get by

looking at the overview of the Test System (Figure 6 and 8)
is that, even if the system looks well-organized, in spite of
the numerous disharmonious artefacts: we see very dark
districts, where the tests which were executed more than
365 days ago are localized and districts of increased
number of high building, even skyscrapers, in which several
very important and common tests are defined.

The skyscrapers are giving us the impression how many
of existing LLTC are described much better than the other
ones. After a short analysis based with a focus on the
interesting building, we could find out that the biggest part
of those buildings and districts are representing part of the
regression test for the area, which has a very big
importance to the project (see Figure 9 for zooming –
building yellow marked).

Fig.8. Zooming interesting area of Test City, looking for description
length

The third attribute or mapped metric was in our case the
modification age, which has not added in this case a value
to the analysis. Information received from both views of the
Test City has proven the information’s from the first stage of
our analysis.

The first look through the test bases gave us a very
good impression about the quality and areas of the system
undergoing the test, even without knowing the system itself.
This was possible within a few minutes counted from
metrics import to perform an analysis of the system.
Necessary data for LLTC adaptation and/or reorganization
can be taken/exported based on zooming information in the
interesting areas/districts.

The thresholds for recognition of obsolete LLTCs, which
are to be taken under consideration, are strictly connected
to the application lifetime. As soon as the application update
cycle is very short (below 1-2 months), we can assume that
found data, which has not been created, modified or
executed longer than 1 year ago, is obsolete. This does not
have to be always true, given however a possibility to easily
fetch unwanted anomalies within the test base. Setting
threshold to the other values gave us the possibility to
recognize specific patterns and exclude undesired data
from the test suite. Other examples can be projected to the
description length. We assume, a well-defined LLTC as
soon as its description length contains at least 100
characters, first without checking the content. Everything
below, we would treat as data to be investigated. On the
other hand if there are too many characters we can
assume, found LLTC is very complex, as its description
needs to be very long.

Related work

Since the early days of software visualization, software
has been visualized at various levels of detail, from the
module granularity seen in Rigi [8] to the individual lines of
code depicted in SeeSoft [9].

The increase in computing power over the last 2
decades enabled the use of 3D metric-based visualizations,
which provides the means to explore more realistic
metaphors for software representation. One such approach
is poly cylinders [10], which makes use of the third
dimension to map more metrics. As opposed to this
approach in which the representations of the software
artefacts can be manipulated (i.e., moved around), our code
cities imply a clear sense of locality, which helps with viewer
orientation. Moreover, our approach provides an overview
of the hierarchical (i.e., test folder, test object, package)
structure of the testware.

The value of a city metaphor for information visualization
is proven by papers, which proposed the idea, even without
having an implementation. [11] Proposed this idea for
visualizing information for network monitoring and later [12]
proposed a similar idea for software production. Among the
researchers who actually implemented the city metaphor,
[17; 18; 19] represented classes are districts and the
methods are buildings. Apart from the loss of package
information (i.e., the big picture), this approach does not

98 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1a/2013

scale to the magnitude of today’s software systems,
because of its granularity.

The 3D visual approach closest in focus to ours is [13],
which uses boxes to depict classes and maps software
metrics on their height, colour and twist. The classes’ box
representations are laid out using either a modified tree
map layout or a sunburst layout, which split the space
according to the package structure of the system. The
authors address the detection of design principles violations
or anti-patterns by visually correlating outlying properties of
the representations, e.g., a twisted and tall box represents a
class for which the two mapped metrics have an extremely
high value. Besides false positives and negatives, the
drawbacks of this approach are that one needs different
sets of metrics for each design anomaly and the number of
metrics needed for the detection oftentimes exceeds the
mapping limit of the representation (i.e., 3). The detection
strategies [14] were introduced as a mechanism to
formulate complex rules using the composition of metrics-
based filters, and extended later [15] by formalizing the
detection strategies and providing aid in recovering from
detected problems.

Conclusions and future work

Test case management, test analysis and test creation
are the most important tasks within the whole test
management process. It is very hard to concentrate the
analysis on a small set of the test, as it is not getting a
potential win against the requirement spectrum. Performed
visualization has shown us how easy in use and efficient it
can be presented as a method for test analysis. Finding an
obsolete LLTC based on available metrics and set
thresholds is very comfortable and does not require deep
system knowledge, even if system is very complex. To get a
fast overview about a large number of test cases without
deep knowledge of the test base is very important,
especially if analysis is to be performed through external or
new organization. This saves needed time and allows a
very fast overview in “high management” capable way. This
can act as a base for further and deeper analysis and test
reorganization activities. Additionally we have observed that
the person performing an analysis is tending to point its
view on maximum two metrics in time and not searching for
further information on the third one. This behaviour was
driven via visualization framework and its available mapping
attributes and partly human laziness.
Our future directions will focus on the points listed below:
1. Extension for more APIs to Test Management tools
available on the market.
2. Comparison for analysis outcome when using same
metrics but different Visualization Metaphors.
3. Visualization for metrics within the timeline.
4. Extend number of evaluated metrics, e.g. to get
possibility to find out duplicates.

REFERENCES
[1] Richard Wettel, Michele Lanza, S.: Program Comprehension

through Software Habitability. In Proceedings of 15th
International Conference on Program Comprehension, (ICPC
2007). IEEE Computer Society. (2007)

[2] Dickinson, W. The Application of Cluster Filtering to operational
testing of Software. Doctoral dissertation. Case Western
Reserve University, (2001)

[3] David Zaen Leon Cesin, Profile analysis techniques for
observation-based software testing, Doctoral dissertation, Case
Western Reserve University, (2005)

[4] ISTQB, Syllabus,
http://istqb.org/download/attachments/2326555/Foundation+Le
vel+Syllabus+%282010%29.pdf (2010)

[5] IEEE, 1059-1993 - IEEE Guide for Software Verification and
Validation Plans,
http://standards.ieee.org/findstds/standard/1059-1993.htm
(1993)

[6] Dickinson, W. The Application of Cluster Filtering to operational
testing of Software. Doctoral dissertation. Case Western
Reserve University (2001)

[7] David Zaen Leon Cesin, Profile analysis techniques for
observation-based software testing, Doctoral dissertation, Case
Western Reserve University (2005)

[8] Muller, H., and Klashinsky, S.:. Rigi: a system for programming-
in-the-large. In Proceedings of ICSE 1988, 80–86, ACM Press
(1988)

[9] Eick, S., Graves, T., Karr, A., Marron, J., and Mockus, S.: Does
code decay? Assessing the evidence from change
management data. IEEE Transactions on Software Engineering
27, 1, 1–12 (1998).

[10] Marcus, A., Feng, L., and Maletic, J. I. S.: 3d representations
for software visualization. In Proceedings of SoftVis 2003, 27–
36, ACM Press (2003).

[11] Santos, C. R. D., Gros, P., Abel, P., Loisel, D., Trichaud, N.,
and Paris, J. P. S.: Mapping information onto 3d virtual worlds.
In Proceedings of the IV International Conference on In-
formation Visualization 2000, 379–386, (2000).

[12] Panas, T., Berrigan, R., and Grundy, J. S.: A 3d metaphor for
software production visuali-zation. IV 2003 - International
Conference on Computer Visualization and Graphics Appli-
cations, 314, IEEE CS Press, (2003).

[13] Langelier, G., Sahraoui, H. A., and Poulin, P. S.: Visualization-
based analysis of quality for large-scale software systems. In
Proceedings of ASE 2005, 214–223, ACM Press, (2005)

[14] Marinescu, R. S.: Detection strategies: Metrics-based rules for
detecting design flaws. In Proceedings of ICSM 2004, 350–
359, IEEE CS Press (2004)

[15] Lanza, M., and Marinescu, R. S.:. Object-OrientedMetrics in
Practice. Springer (2006)

[16] Richard Wettel, Software Systems as Cities, Doctoral
Dissertation, Faculty of Informatics of the Università della
Svizzera Italiana (2010)

[17] Ivar Jacobson, Grady Booch, James Rumbaugh, The Unified
Software Development Process, Addison-Wesley Professional,
(1999) ISBN 0-201-57169-2

[18] E. J. Weyuker and B. Jeng, Analyzing partition testing
strategies, IEEE Transactions on Software Engineering 17,
(1991), 703–711.

[19] F. T. Chan, T.Y. Chen, I.K. Mak, and Y. T. Yu, Proportional
sampling strategy: guidelines for software testing practitioners,
Information and Software Technology, (1996), 775–782

[20] T.Y. Chen and Y. T. Yu, On the expected number of failures
detected by subdomain testing and random testing, IEEE
Transactions on Software Engineering, (1996), 109–119

[21] F. T. Chan, T.Y. Chen, and T.H. Tse, On the effectiveness of
test case allocation schemes in partition testing, Information
and Software Technology, (1997), 719–726.

[22] V. Averbukh, M. Bakhterev, Interface and visualization
metaphors, HCI'07 Proceedings of the 12th international
conference on Human-computer interaction: interaction
platforms and techniques, Springer-Verlag, (2007), ISBN: 978-
3-540-73106-1.

Author: mgr inż. Artur Sosnówka, Zachodniopomorski Uniwersytet
Technologiczny, Katedra Inżynierii Oprogramowania, ul.Żołnierska
49, 71-210 Szczecin, e-mail: arsosnowka@wi.zut.edu.pl

