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Cross-correlation Function Determination by Using 
Deterministic and Randomized Quantization  

 
  
Abstract. The influence of quantization on the cross-correlation function determination is discussed. Three types of quantization: deterministic, 
dither randomized, and randomized by inputting signals into a quantizer are considered. In each case, a relation for cross-correlation function bias is 
given.  
 
Streszczenie. Celem artykułu jest analiza wpływu różnych rodzajów kwantowania na dokładność wyznaczania funkcji korelacji wzajemnej sygnałów. 
Rozważono trzy sposoby kwantowania: kwantowanie deterministyczne oraz randomizowane za pomocą sygnałów ditherowych i sygnałów 
wprowadzonych do kwantyzatorów. W każdym przypadku sformułowano zależności na obciążenie estymatorów funkcji.(Wyznaczanie funkcji 
korelacji wzajemnej z zastosowaniem kwantowania deterministycznego i randomizowanego). 
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Introduction 

The development of the measurement technique is 
accompanied by developing the existing as well as by 
devising new ways of signal quantization. The literature is 
constantly providing new knowledge on deterministic 
quantization, quantization with dither, and quantizer 
randomization [1-6]. It may have seemed that the huge 
technological progress leading, among other things, to 
constructing multi-bit converters would push several-level 
processing correlators from the market. It has not been the 
case, though and they are still being made, mainly for 
specialized measurements, e.g. in radioastronomy or in 
research on ionosphere dispersion. Research on correlation 
function estimators continues to be done to increase the 
equipment operational speed (of real-time measurements) 
or to simplify measurement procedures (of data reduction) 
[7]. Randomized quantization combined with averaging is 
aimed to improve conversion accuracy and dedicated to 
both low-bit and multi-bit converters.  

 
Cross-correlation function 

A cross-correlation function Rxy() is a similarity measure 
of two signals x(t) and y(t), and for an ergodic random 
process, it is expressed by the relation [8]:  
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In the measurement technique, estimators of this 
function are used. In order to obtain a digital estimator, the 
signal undergoes discretization in the time and value 
domains. For sampled and quantized signals xq(it) and 
yq(it), the estimator can assume the form:  
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where: t - sampling period, M - number of samples taken, 
kt - delay.  

Correlation function estimators can be determined by 
making use of the various ways of quantization mentioned 
in the Introduction.  

 
Evaluation of estimator accuracy 
 Estimator accuracy is determined by means of the 
variance describing the error random component and the 
bias describing the systematic component [8, 9]: 
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Based on (3) and (4), the value of the mean square 
error is determined. The minimization of such error often 
reflects a trade-off between the minimization of the variance 
and the estimator bias.  

 
Bias of the estimator obtained based on 
deterministically quantized signals  

Quantization is an operation converting a sampled 
signal into a discrete signal. In most cases, the quantization 
intervals have an equal width q called a quantization step. 
When a quantity x has been quantized, the result is  
a quantity xq, most frequently determined from the formula: 
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where ent() is an operator determining the integral part.  
This way of quantization is described by Widrow's 

quantization theory. Widrow is the author of theorems 
concerning the conditions under which the statistics of 
original quantities can be reconstructed from the statistics of 
quantized quantities. Among other things, random variable 
moments are such statistics. For any set value t, the cross-
correlation function of signals x(t) and y(t+) can be 
considered in terms of joint moments of random variables x 
and y which assume the values of these signals.  

Let us suppose that xq and yq are random variables 
assuming the values of quantized signals. The theorems 
concerning the recovery of the joint moments of the random 
variables x and y from the joint moments of the random 
variables xq and yq have the form [6]1:  

 
Quantizing Theorem II for Two Variables  

 
The joint moments of random variables x and y can be 

reconstructed from the joint moments of random variables 
xq and yq if: 

                                                 
1 Versions of these theorems from various periods differ somewhat. 
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where xy(v1, v2) is the joint characteristic function of the 
variables x and y, while q1 and q2 are quantization intervals. 

 
Condition (6) formulated by Widrow is not fulfilled by 

most signals occurring in practice, which results in the 
appearance of additional components (biases) in the cross-
correlation function estimators determined based on 
quantized data.  

Known in the literature is a relation for the cross-
correlation function estimator bias determined based on 
signals quantized according to (5). It has the form [9]:  
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where: 
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In practice, bias (7) is non-zero. 
 

Bias of the estimator obtained based on randomly 
quantized signals  

In the measurement technique, randomization of 
quantization is aimed to eliminate or reduce the estimator 
bias and can be realized by means of a dither signal or by 
inputting an appropriate random signal into the quantizer. In 
Figs 1 and 2 block diagrams of such realizations are shown.  
 
 
 
 
 
 
 
 
 
Fig.1. Quantizer randomized by non-substractive dither d 
 
 
 
 
 
 
 
 
 
Fig.2. Quantizer randomized by signal  

 
Quantization with dither can be performed in 

accordance with the relation: 
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where d is a random variable assuming the values of the 
dither signal. Such a signal is stationary and independent of 
the quantized signal [3]. The random variable d has  
a symmetric probability density function and a zero mean.  

In measurement procedures, processing with dither 
must be accompanied by averaging [3]. In algorithm (2), 
such averaging takes place. The cross-correlation function 
is determined in a two-channel configuration and requires 
the application of two dither signals. If independent random 
variables assuming the values of dither signals are denoted 
by d1 and d2, then the systematic error (bias) of the 
estimator assumes the form [9]2:  
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where: 
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It follows from formula (9) that the bias equals zero 
when the characteristic functions of the random variables d1 

and d2 satisfy the conditions:  
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Conditions (11a, b) are necessary and sufficient, 
whereas conditions (12a, b) are sufficient. The quantization 
shown in Fig. 2 is realized based on the relation:  
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where  is a random variable, e.g. with uniform distribution 
over the interval <0,1> [1, 2].  

It can be shown that the mathematical operations 
described by formulae (8) and (13) are equivalent when: 
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2 In relation to [9], the formula has been simplified by using the 
property: d1(-v)=d1(v) and d2(-v)=d2(v). 
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Table 1 compiles the statistics of random variables d 
and  significant in modeling quantization operations. 
 
 
Table 1. Properties of random variables d and  

Variable d Variable =0.5-d/q 
with uniform density 
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Making use of the properties of the characteristic 

function [10], as well as of the fact that: 
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we can obtain the expressions: 
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By virtue of (9) and (17), we can formulate a relation for 
the cross-correlation function bias obtained in  
a configuration with quantizers randomized by signals 1 
and 2. It assumes the form: 
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where: 
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Random signals with distributions corresponding to the 
random variable distributions from Table 1 make it possible 
to bring relations (9) and (18) to zero, which signifies  
a theoretical possibility of eliminating the estimator bias 
(systematic error) resulting from not fulfilling the condition 
expressed in formula (6) by the quantized signals. 

It is possible to randomize flash converters by acting 
upon the reference voltage [1].  

 
Conclusion 

The influence of three ways of quantization on the bias 
(systematic error) of digital correlation function estimators 
has been analyzed. An original relation (18) for the bias of 
an estimator realized in a system with quantizers 
randomized by random signals has been derived. Two 
types of random signals (with uniform and triangular 
distributions), whose use makes it possible to (theoretically) 
bring the estimator bias to zero, have been analyzed.  
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