
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1a/2013                                                                                  1 

 
 
 
 

 

Ukazuje się od 1919 roku                1a'13 
 

Organ Stowarzyszenia Elektryków Polskich        Wydawnictwo SIGMA-NOT Sp. z o.o. 
 

Grzegorz TARCHAŁA, Teresa ORŁOWSKA-KOWALSKA 

Politechnika Wrocławska, Instytut Maszyn, Napędów i Pomiarów Elektrycznych 
 
 

Sliding Mode Speed Observer for the Induction Motor Drive with 
Different Sign Function Approximation Forms and Gain 

Adaptation 
 
 

Abstract. This paper deals with sign function continuous approximation forms influence on the performance of the classical Sliding Mode Observer 
(SMO). Saturation and sigmoid functions are used to reduce the chattering, introduced due to the sign function usage. The influence of the filter time 
constant is also being widely considered. Finally, two simple methods of the observer gain adaptation are presented and described. Simulation and 
experimental tests, obtained using a DSP-based system, are shown to illustrate presented issues. 
  
Streszczenie. W artykule opisano wpływ zastosowania ciągłej aproksymacji funkcji znaku na pracę klasycznego ślizgowego obserwatora prędkości. 
Funkcje nasycenia oraz funkcja sigmoidalna użyte zostały w celu redukcji zjawiska chatteringu, który powstaje na skutek wykorzystania funkcji 
znaku. Szeroko przebadany został również wpływ stałej czasowej filtru. Zaprezentowane zostały także dwie proste metody adaptacji wzmocnienia 
obserwatora. Opisywane zagadnienia zostały zilustrowane przy pomocy badań symulacyjnych i eksperymentalnych. (Ślizgowy obserwator 
prędkości dla napędu indukcyjnego z różnymi funkcjami aproksymującymi oraz adaptacją wzmocnienia).  
 
Keywords: sliding mode observer, induction motor drive, chattering, continuous approximation. 
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Introduction 
The induction motor drives due to their low cost and 

operational reliability are becoming more and more 
common in the industry. Perfect dynamic performance of 
the drives can be assured by one of the field-oriented 
control methods. Additional cable reduction can be assured 
by a speed estimation. Speed estimation can be also 
applied in applications where the speed sensor can be 
damaged [1]. 

The control structure was the first sliding modes 
application area for induction motors. The sliding modes 
(SM) as a main part of variable structure systems theory 
was first proposed by Izosimov in [2]. This theory can be 
also used for the rotor/stator flux and speed observer 
design like [3]. Sliding Mode Observers (SMOs) allow 
obtaining essential feedback values in the vector control 
structures (e.g. DFOC or DTC). 

Simple hardware implementation, robustness over 
specified range of motor parameter uncertainties, 
disturbances and measurement noise, eventually fast 
dynamic response entail still growing publication number in 
the field of the SM applications. Model Reference Adaptive 
System – type SMO is proposed in [4]. Sliding mode control 
and observer both working simultaneously were introduced 
in [5]. The adaptive [6], [7] and the second-order [8] 
approaches were also presented. A new observer designed 
in a synchronous frame is introduced in [9]. An excellent 
overview of existing (till 2002) SMO types for different 
motors can be found in [10].  

Few publications were published in order to compare 
SMOs with different estimation methods – Model Reference 
Adaptive System (MRAS) based observers in [11], [12], 
extended Kalman filters [13] and, together with Luenberger 
style observer, in [14]. 

In recent years special consideration has been also 
focused on the IM parameters estimation methods utilizing 
the sliding-mode approach. In [15] stator and rotor winding 
resistances estimation method is presented. Immeasurable 
rotor parameters can be also estimated, as in [16], [17], 
also with the second-order sliding modes [18]. The 
Luenberger-sliding mode type observer was proposed for 
stator resistance and rotor time constant estimation [19]. 

All of the above-mentioned solutions take the advantage 
of the sign function in the SM algorithm. Therefore slow-
variable estimated signals, i.e. motor speed or winding 
resistance parameters become the high frequency, 
discontinuous values. Due to these rapid changes, called 
the chattering phenomenon, the equivalent values must be 
extracted. There are many different ways to reduce the 
chattering in the field of the variable structure control 
systems, what was compared in [20]. In case of the 
estimation, a low-pass filter seems to be the simplest 
solution. However, there appeared an idea of applying a 
continuous approximation instead of the sign function in 
order to eliminate or at least to reduce the chattering. The 
saturation function was first proposed for the nonlinear 
plants control in [21] and further investigated in [22]. The 
sigmoid function has been proposed in [23]. These two 
ideas can be applied in sliding mode observers theory as 
well – the saturation function or a sigmoid function can 
replace the sign function successfully. In literature many 
authors only refer to this possibility, while this paper tries to 
look more insightfully into these problems. The standard 
SMO [10] will be used to illustrate described issues. 

The paper is organized in eight chapters. The IM 
mathematical model is presented first. Then, the speed 
observer design is introduced. Next, the filtration problem of 
the estimated speed is described, the filter time constant 
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influence is investigated. Sign function continuous 
approximation forms and simple, linear adaptation methods 
are presented afterwards. Load torque value influence on 
performance of the observer and short conclusion are 
shown at the end of the paper. All described issues are 
illustrated by simulation and experimental tests. 
 
Mathematical model of the Induction Motor 

Mathematical model of the induction motor is essential 
for the Sliding Mode Observer design, as the observer is 
one of the algorithmic speed estimation methods. The 
model of the squirrel-cage induction motor can be derived 
using the commonly-known assumptions [1], [24] (3 phase 
symmetry, magnetizing linearity etc.) in a stationary 
reference frame  and per unit system: 

– voltage equations: 

(1)  
sss ψiu

dt

d
Tr Ns   

(2)  
rrr ψψi0 mNr j

dt

d
Tr   

– current-flux equations: 

(3)  rss iiψ Ms xx   

(4)  srr iiψ Mr xx   

– and the equation of motion: 

(5)   1m
e o

M

d
m m

dt T


   

(6)   Ime s s s sm i i      *
s sψ i  

where: us=us + jus, is=is + jis, ψs=ψs+jψs– space vectors 
of the stator voltage, current and flux, ir=ir + jir, 
ψr=ψr+jψr– space vectors of the rotor current and flux, 
rs, xs, rr, xr, xM, TM – induction motor parameters: stator and 
rotor winding resistances, reactances, magnetizing 
reactance and mechanical time constant, m, me, mo – motor 
speed, electromagnetic and load torque, TN – result of the 
per unit system introduction, TN=1/(2fsN), fsN – nominal 
frequency. 
Motor nominal values, its parameters and base values 
necessary to make the conversion between physical and 
per unit systems are shown in the Appendix. 
 
Speed and rotor flux sliding-mode estimator design 

Presented Sliding Mode Observer (SMO) is based 
directly on the IM equations shown in previous section (1)-
(4). Rotor flux estimation equation can be obtained 
combining (2) and (4): 

 (7)  rsr
r ψiψ

ψ
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r

r
N j
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rx
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r

dt

d
T   

The stator current vector dynamics can be expressed 
from (1),(3) and (4), as follows: 

(8)

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

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In the observer equations mechanical speed is replaced 
by the estimated one, and an additional variable  is 
introduced. This forms a slightly modified version of [10]. 
Estimated rotor flux vector:  

(9)  rsr
r ψiψ

ψ
ˆˆˆˆ

ˆ
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where: ‘^’ indicates estimated quantities. 
Speed estimation, since it relies on the stator current 

estimation error, demands the stator current vector to be 
estimated, and this can be realized using:  
(10)
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 where: total leakage factor=1–xM
2/(xsxr). 

In the above equations (9), (10), the estimated speed and 
the additional factor ̂  take the advantage of the sign 

function. The discontinuous signal of the speed can be 
calculated by: 

(11)   sKm signˆ   

where: K – positive constant. Speed switching function is 
as follows: 

(12)       rssrss iiiis ˆˆˆˆ   

The auxiliary variable can be introduced to reduce the 
error caused by mistaken determination of the rotor time 
constant: 

(13)   sK signˆ   

where: K – positive constant, and the switching function of 
the auxiliary variable: 

(14)       rssrss iiiis ˆˆˆˆ   

As the auxiliary parameter is used only in the SMO 
tuning, there is no need to replace the sign function in (13) 
by its continuous approximation. 

If the stator flux vector components are needed (e.g. in a 
DTC structure) they can be estimated by: 

(15)  
srs iψψ s

r

M x
x

x
 ˆˆ  

is
ˆ

si

Current 
estimation

(eq. 10)
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(eq. 9)

),ˆ(ˆ
srs iψψ f
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sψ̂
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Switching 
functions

ψrˆ

film,
ˆ

ˆ

1

1

)(ˆ

)(,
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p

fm

film

Flux 
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sign(s), sat(s), sigm(s)

si

su

Low-pass filter

 ˆ,ˆm

 ss ,
(eq. 11,13)

(eq. 15)

Fig.1. Block diagram of the presented sliding-mode speed observer 
 

The block diagram of the described SMO is presented in 
Fig. 1. Vectors of stator current and voltage are the input 
variables of the observer. Voltage values are estimated 
using the DC-link voltage and the inverter transistors 
positions (not shown in the figure). Stator or rotor flux vector 
and estimated speed are the outputs of the observer. 
Estimated, high-frequency signals of speed and  are used 
for tuning the flux and current estimators. However, this 
high-frequency speed signal is unsuitable for use and 
analysis, therefore it must be filtered. 
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Filtration problem in SM Observer 
 The discontinuous speed estimation signal (11) obtained 
using the sign function: 

(16) 








0where,1

0where,1
)sign(

s

s
s  

is inconvenient as a close-loop feedback in the speed 
control algorithms (e.g. field-oriented methods) as well as in 
diagnostics or for field-weakening operation (as the speed 
information is required in the field-weakening algorithm). 
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Fig.2. Speed estimation process for different filter time constants: a) real and estimated speed, b) speed estimation errors, sign function, 
K=1, experimental results 
 

The equivalent value of the real speed signal of the SMO 
must be extracted from the discontinuous signal, using a 
low-pass filter. The simplest filter to use is the first-order 
transfer function as follows: 

(17)  
1

1

)(ˆ

)(ˆ ,




pTp

p

fm

film


  

where: Tf – filter time constant, the filter settling time Ts=3Tf 
and p – Laplace operator. 

The filter time constant influence on the performance of 
the drive, during experimental tests, is shown in Fig. 2. It 
can be seen, that the bigger the time constant the smaller 
the oscillation level. However, the dynamical error during 
fast speed reversions becomes bigger. In such situation a 
compromise is necessary, taking into account the dynamics 
of the drive and its application. The oscillation level can be 
reduced, for a specific time constant, using the sign function 
continuous approximation. 

 

Sign function approximation forms 
The sign function (16) can be replaced with its 

approximation – a continuous form. There are two different 
approaches possible, i.e. saturation and sigmoid functions. 

The saturation function can be described as follows: 

(18) 
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There exists a great variety of the sigmoid type functions. 
Some of them are listed below (normalized in such way that 
their values are between ±1): 
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Another parameter appears,  , defining the slope of the 
sat(s) and sigm(s) functions. 
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Fig.3. Sign function continuous approximation forms: a) a 
comparison of sign, sat and one of the sigmoid functions, b) 
different sigmoid functions for the same value of
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In Fig. 3a a comparison of the sign, saturation and 
sigmoid functions is presented. Set of sigmoid functions is 
presented in Fig. 3b. Despite the significant divergence 
between mentioned characteristics from the Fig. 3b, for 
specific  values (different for each function) the functions 
become very similar. In such situation the speed observer 
performance is practically the same for each of the above 
functions – it can be shown in experimental tests. If one 
form of (19) is to be chosen, the sigm4(s) seems to be the 
optimal solution – computations are the simplest then. 

Simulation results 
Speed estimation results obtained during simulation tests 

are presented in Fig. 4. It can be seen (Fig. 4a) that the 
high frequency signal must be filtered, when the sign 
function is used. 
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Fig.4. Estimation process during simulation tests: a) using sign 
function, b) using saturation function 
 

Filtered estimated speed follows the real speed almost 
exactly. Usage of the continuous approximation, the sat(s) 
function in this case, allows eliminating the filter completely 
(Fig. 4b). However, this situation can be observed only 
during simple simulation tests. 
 

Experimental tests 
Experimental tests indicate clearly that in a real drive 

complete filter elimination is impossible. It can be noticed in 

Fig. 5. Oscillation of the estimated, non-filtered speed can 
be reduced significantly (Fig. 5b) using the sign function 
approximation. However, the bigger slope of the sigmoid 
function, , the bigger dynamical error appears. This can be 
seen clearly in Fig. 5c. Again, the choice of the parameter 
must be a compromise between the oscillation level and 
dynamical error. 

When comparing sign and sigmoid function with small  
parameter, it can be seen that the maximum dynamical 
error remains the same while the oscillation level is 
reduced. Laboratory trials indicate also that using any type 
of the approximation function – the saturation or the sigmoid 
one with similar slopes (as in Fig. 3a), gives almost the 
same results. 
 

Gain adaptation methods for sliding-mode observer 
It seems clear that for a constant value of the observer 

gain K in (11) the oscillation level of the estimated speed 
is the same for whole speed range. It means that for small 
speed values the vibrations become relatively large. When 
K is set too high the drive can become even unstable. 
Oscillation level of estimated values can be reduced if the 
mentioned gain is different for different operation points. 
One of possible simple methods of K adapting is to change 
it with the reference speed: 

(20)  ref
mKKK   10  

where: K0, K1 – positive constants. 
The observer operation using this adaptation method is 

shown in Fig.6 (second line). The undesired situation can 
appear when there exists a big difference between actual 
(estimated) and reference speed, e.g. during rapid 
reversions, as after about 5.5 s. A large, short estimation 
error can be seen in Fig. 6c (second line). 

This problem can be solved using second adaptation 
method. Also, when there is no information about the 
reference speed – e.g. in traction drives with direct torque 
control without any outer control loop, the parameter K can 
be adapted directly with the estimated speed: 

(21)  est
mKKK   10  

Speed estimation for this adaptation method is shown in 
Fig. 6 (third line). There is no longer large estimation error 
during rapid speed changes. 
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Fig.5. Speed estimation for sign function and sigmoid function (different values of parameter ): a) real and estimated speed, b) non-filtered 
and filtered estimated speed, c) speed estimation error, experimental results, Tf=0.005s
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Fig.6. Speed estimation for different observer gain adaptation methods, for constant gain (first line), changed with the reference (second 
line) and estimated speed (third line): a) real and estimated speed, b) filtered and non-filtered speed, c) speed estimation error, 
experimental results 

 
The adaptation constants K0, K1 can be found quite 

easily - K1 should be set slightly above one and K0 should 
be greater than zero. The last condition must be fulfilled 
when the adaptation method (21) is applied – when K0=0 
the speed estimation is unrealizable. 

In Fig. 6 the difference between constant and adaptive 
gain approaches is shown. This difference can be seen 
especially for the low speed range – the greater the speed 
the more similar the transients become. It is clearly 
connected with the equations (20)-(21). 
 

Load torque influence 
Load torque influence on the classical Sliding Mode 

Observer operation is presented in Fig. 7. Two different 

situation are presented – with nominal and without load 
torque (estimated electromagnetic torque is shown in Fig. 
7c). In both cases estimated speed follows the real speed 
almost ideally. 

The observer was tested using the sigmoid function with 
the observer gain adaptation according to the equation (21). 
It can be seen that the estimation error (Fig. 7b) is slightly 
bigger with nominal torque operation than under the idle 
running. Analogous conclusions can be made for the 
remaining aspects of the observer designing – filter time 
constant and sign function approximation parameter  
influence – estimated speed oscillations become slightly 
bigger in case of the full load torque operation. 
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Fig.7. Load torque influence on the speed observer operation, full (first line) and no load operation (second line), respectively: a) real and 
estimated speed, b) speed estimation error, c) estimated motor torque 

 
Conclusions 

Several aspects of the sliding mode speed observer 
operation were discussed in this paper and illustrated using 
simulation and experimental results. First, the influence of 
different filter time constants on the speed estimation error 
value was shown. It was shown that the bigger the time 
constant the oscillation level of the estimation error 
becomes smaller. However, there appears simultaneously a 
significant dynamic error during fast transients. Therefore 
the choice of the time constant must be a compromise, 

taking into account the dynamics of the drive and the 
estimated speed oscillations. 

Second investigated problem was the influence of two 
simple sign function approximation forms: saturation and 
sigmoid function on the performance of the estimator. There 
is almost no difference in operation of these two functions, 
however the choice of the slope parameter becomes an 
interesting issue. Usage of the sign function approximation 
with small  allows to decrease the value of oscillations with 
the same dynamical error, comparing to the sign function. 
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However, together with increasing slope  the dynamical 
error is augmenting. It was shown that there is a possibility 
to eliminate the low pass filter of the estimated speed only 
during simulation tests. 

Finally, two observer gain adaptation methods were 
introduced. First of them utilized linear adaptation with the 
reference speed, however large error can appear when the 
real speed is significantly different than the reference one. 
Second of them eliminated mentioned drawback of the 
previous method, and the observer gain were dependent on 
the estimated speed value. 

 
Appendix 
Base values for conversion from the physical [ph.u.] to per 
unit [p.u.] systems are shown in Table 1. Induction motor 
parameters and its nominal values are presented in Table 2 
and Table 3, respectively. Mechanical time constant of the 
drive: 

(22)  

bp

b
M Mp

JT


  

where: J – moment of inertia, pp – pole pairs, base values 
are presented in Table 3. 
 
Table 1. Base Values 

Power 
[kW] 

Torque 
[Nm] 

Speed 
[rpm] 

Voltage 
[V] 

Current 
[A] 

Sb=3/2UbIb Mb=ppSbb nb=60fsN/pp Ub=√2 UsN Ib=√2IsN 
4.8 30.56 1500 565.7 5.657 

Frequency 
[Hz] 

Velocity 
[rad/s] 

Flux 
[Wb] 

Impedance 
[ 

fb=fsN b=2fsN bUbb bUbb 
50 314.16 1.8 100 

 
Table 2. Motor nominal values 

Power Torque Speed Voltage Current 
3.0 [kW] 20.46 [Nm] 1400 [rpm] 400 [V] 4.0 [A] 

0.625 
[p.u.] 

0.67 
[p.u.] 

0.93 
[p.u.] 

0.707 
[p.u.] 

0.707 
[p.u.] 

Frequency Stator flux Rotor flux 
50 [Hz] 314.16 [Wb] 1.8 [Wb] 
1 [p.u.] 0.80 [p.u.] 0.73 [p.u.] 

 
Table 3. Parameters of the IM equivalent circuit 

Rs Rr Xm Xs Xr 
7.1 [] 5.4 [ 167.8 [ 9.8 [ 9.8 [ 
0.071 
[p.u.] 

0.054 
[p.u.] 

1.678 
[p.u.] 

0.098 
[p.u.] 

0.098 
[p.u.] 
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