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Analysis for quasi-stationary electromagnetic field with 
ferromagnetic objects present within  

 
 
Abstract. A method for calculating a distribution for a quasi-stationary electromagnetic field in the systems containing ferromagnetic objects of non-
linear properties is proposed. An iterative version of fundamental  solutions method was applied in the presented research. Numerical tests 
performed on a simple, model system successfully proved the procedure to be correct and convergent. The report continues our research aimed at 
developing a method competitive to widely applied domain methods  such as FEM, or FDM. 
 
Streszczenie.. W prezentowanej pracy zaproponowano metodę obliczania rozkładu quasi-stacjonarnego pola elektromagnetycznego w układach 
zawierających ciała ferromagnetyczne o nieliniowych właściwościach, wykorzystującej iteracyjną wersję metody rozwiązań fundamentalnych. Na 
prostym układzie modelowym przeprowadzono testy numeryczne wykazujące poprawność I zbieżność opisanej procedury. Praca jest kontynuacją 
badań zmierzających do opracowania metody konkurencyjnej wobec powszechnie stosowanych metod obszarowych (MES, MRS). Metoda 
obliczania rozkładu quasi-stacjonarnego pola elektromagnetycznego w układach zawierających ciała ferromagnetyczne o nieliniowych 
właściwościach. 
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Introduction 

Computing the electromagnetic field distribution in 
systems containing ferromagnetic objects of non-linear 
properties provides one of the toughest challenges to face 
in technical electrodynamics. For the dynamic problems it 
proves practically impossible to take into account all the 
physical effects influencing the real magnetic induction 
dependence on the magnetic field intensity, thus it is 
obligatory for any computation model dealing with the 
concerned problem to assume a set of simplifications. 
Within this aspect the farthest simplification is to make the 
problem linear, i.e. to assume magnetic permeability to be 
constant overall the system under analysis. As reported in 
[1-3], such an assumption on linear properties of materials, 
works well for high power transformer models, with real 
shape details for their fundamental structural elements, 
such as coils wirings, cores, tank and screens. To 
successfully reproduce complex, three dimensional 
geometry of the concerned models boundary methods to 
solving partial problems – such as integral equation 
methods [1, 2] and fundamental solution methods (FSM) [3] 
shall be applied. Despite linearization of the problem the 
results proved satisfactory, well corresponding to findings of 
the experimental research performed on the physical model 
of the transformer. Advances made recently in 
computational field and progress in developing FSM, as 
well as their likely implementation to non-linear problems [4-
6], have made the authors to re-invoke their interests, in this 
subject. It seems reasonable to expect that the computation 
method developed in the quoted reports can be generalised 
in such a manner that it would, to some degree, allow to 
include non-linear effects due to magnetisation curve.  

The presented paper provides the first step in this 
undertaking. With a relatively simple model it clearly aims at 
testing the correctness and iterative efficiency of the FDM 
version applied to analysing computations for a quasi-static 
electromagnetic field in three dimensional systems 
containing objects of non-linear magnetic properties.  

System and assumptions 
The system under consideration consists of domains of 

currents inducing the primary field  0,dielectric domains I 
of constant material parameters, conducting domains II of 
constant conductivity  and magnetic permeability 
depending on the magnetic field intensity. It is assumed 
that all the domains disjoint areas.  

With no detriment to the generality of the problem it is 
further assumed that the considered system contains only 
one specific domain of each type, as illustrated in Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. The system under consideration 
 

We have assumed the following simplifications  
1. the considered problem is quasi-static,  
2. the conductive materials dimensions and the curvature 

radius of their surfaces are much bigger than the 
equivalent depth of electromagnetic field penetration, 

3. exciting currents and field components are sinusoidal in 
time,  

4. the distribution for the exciting currents is known, 
5. the magnetic induction is uniquely dependant on 

magnetic field strength and this relation is known. 
Assumption 1 means that the considered problem varies 

slowly in time, which allows to neglect the expression 
related to displacement currents in Maxwell’s equations.  

Assumption 2 allows to replace classic boundary 
conditions for the electrodynamics on the conducting 
materials surfaces with the impedance type condition.  

Assumption 3 means that the sinusoidal distortion effect 
for the field-time dependencies related to non-linear 
material magnetic properties systems, can be neglected. 
Hence, all time dependent physical quantities can be 
represented with their complex amplitudes and complex 
Maxwell equations are applicable. 
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Assumption 5 means that the magnetic hysteresis effect is 
negligible. 

Mathematical formulation of the problem 
With the assumptions made within the dielectric domains of 
the system the complex amplitude of the magnetic field 
strength H can be expressed with the scalar magnetic 
potential  defined by the relation 

(1)                           gradH  

satisfying the Laplace equation 

(2)                             0Δ   

and the impedance boundary condition on the surface of 
the conducting domains [1, 2, 3]: 
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s1, s2, s3 – orthogonal system coordinates, where s1, s2, vary 
along the tangents to the boundary surface S, while  s3, in 
the direction perpendicular to it, i.e. towards the inside of 
the conducting domain. 
 

To simplify the forms of the further formulas the following 
operator is introduced 
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which transforms (3) into the form 
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The function  can be written in a for 

(9)                          
indexc    

where exc stands for the primary field induced by exciting 
currents flowing in the domain  0, whereas ind is the field 
induced by domain II. Both exc and ind satisfy the 
equation (2).  
With the assumption 4 it is a separate problem to find field 
distribution exc, independent of the problem of computing 
the field  ind.  For sources with closed current lines it can 
be determined from the general relation [3]: 
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  is a spherical angle at which A surface is spanned on 
the infinitely narrow current stream coming through point r 
of domain 0. The remaining symbols are explained in Fig. 
2. Function exc is considered known for further 
considerations. 
 

Fig. 2. Illustration to formulas (10), (11) 
 
Assuming (9) condition (8) can be written as  
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To sum up, a mathematical formulation for finding 
magnetic field distribution in the dielectric domain of the 
system under consideration is reduced to finding a scalar 
complex function ind satisfying Laplace equation and 
condition (12) for the core surface.  

Having solved the problem defined above distribution for 
the electromagnetic field can be found in the conductive 
domain on the base of the following relations [1]: 
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Solving method  
The major problem while solving the above is to 

incorporate the relation, implicit in the boundary condition 
(12) on the magnetic field function (see (4), (7)). The 
solution can be found by an iterative self-consistent process 
for field H distribution on the surface S with function 

)(Hr . In the following steps of this procedure linear 

problems are solved, under the assumption that the function 
local value on surface S is determined with the local value 
of H calculated in the preceding step, i.e. in such a manner 
as if the domain II was non-homogeneous with respect to 
magnetic properties. At the first step )(Hr on surface S is 

determined by the inducing field. So formulated linear 
problems can be solved with another iterative procedure 
based on FSM [4-6]. Both procedures, however, can be 
merged into one, which leads to a simpler final algorithm, 
which as demonstrated with numerical experiments 
performed, converges even quicker.  

According to FSM the sought function Hind at any point r 
of the dielectric domain can be approximated with a function 
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are fundamental solutions to Laplace equation. It should be 
noted that singularities rk. by definition are outside the 
domain I , concerned with solution (18), that is inside the 
domain II. Hence, regardless of the values of qk 
coefficients the function defined with formula (18) remains 
within domain I  a restricted class C∞ function, and thus an 
exact solution to Laplace’s equation. 

Though it is arbitrary how we chose rk  points,  it may still 
significantly influence the convergence of the procedure in 
question.  

Values for coefficients qk are found numerically by 
making function (18) to satisfy the boundary condition (12) 
and thus provide a good approximation of the solution. To 
do so we need to define at first boundary error function 
determined on surface S 
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By substituting (18) we obtain  
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As a measure for the total boundary error of the solution 
(18) a quadratic mean norm of the boundary error function 
is defined 
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With the best approximation method employed it is 
possible to determine the complete set of coefficients qk in 
the sum (18) and keep the value of boundary error of the 
solution minimised. It turns out, however, that much quicker 
(in real time) and nevertheless much simpler procedure, is 
the one where this functional value is minimised in the 
subsequent iterations, and each iteration step brings just 
one of the coefficients qk as dependent on  

(24)                 







S
kk

S
k

k
sF

sF

q
d

d

1
*

2

  

(25) where *
kF denotes a function conjugate to kF , 1k - 

the boundary error function calculated with formula (21) 
after k-1 iteration steps.  

Substituting the resulting value (18) we arrive at subsequent 
approximation of function ind , which provides an input for 
the new values of boundary error function k  necessary in 

the next step of iteration.  

To merge the above procedure with a self-consistent 
procedure between field H and function )(Hr  it is enough 

at each iteration step to compute its local values from the 
magnetic field distribution on the boundary surface S 
determined in the preceding step. Therefore, the self- 
refining process is carried out in parallel to the process of 
diminishing the boundary error of the solution.  

Nevertheless, it should be noted that unlike solving 
linear problems, there is no guarantee for the procedure to 

be convergent, i.e. for the sequence of boundary errors E 
computed in the subsequent iterations steps to decrease. 
For that reason, to assess computational practicability, it is 
necessary to perform a series of such problem-oriented 
tests. Below the first of such tests is described.  

Test 
An initial assessment for the proposed method to be 

correct and convergent was performed with a numerical 
procedure aimed at computing magnetic field distribution for 
a model system illustrated in Figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. The model system under consideration 
 

The original source of the field is the sinusoidal 
alternating current i flowing in a circular coil, which 
surrounds a spherical solid of non-linear magnetic 
properties.  

The assumed H) dependence was that of ST35 steel 
(based on [7]) – see Figure 4. 

 
Fig. 4. (H) dependence (steel ST35) 

 

The excitation field potential calculated from (10) and (11) is 
expressed as 
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The plot shown in Figure 5 represents boundary error 
values(16) obtained at subsequent steps of the iteration 
procedure in question for various exciting current values. 
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The scale used is a double logarithmic one to visualise that 
boundary error series, despite their stochastic character, 
display clearly power-like convergence only after few 
dozens of iterations. It indicates that the presented 
procedure is strongly convergent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. The boundary error versus number of iterations for various 
exciting current values  
 

In Figures 6 to 8 computed distributions for the magnetic 
potenteial and magnetic field intensity components within 
the system under analysis, within y = 0 plane are shown. 

        

Fig. 6. Computed magnetic potential distribution 
 

 
Fig. 7. Computed distribution for the radial component of the 
magnetic field intensity 

       
Fig. 8. Computed distribution for the zenith component of the 
magnetic field intensity 

Summary 
The presented paper continues the research into 

adapting fundamental solution method to solving nonlinear 
problems in electromagnetism. The method dealt with 
herein is concerned with a class of electrodynamics 
systems containing massive conducting objects of nonlinear 
magnetic properties exposed to low frequency sinusoidal 
electromagnetic field; a class of special importance to 
practical engineering. The interactive character of the 
procedure allows for its practicability, such as quick and 
easy assessment of solution errors, convergence rate 
monitoring, hence automatic interruption of computations 
once the required accuracy has been achieved. The 
performance test for convergence proved satisfactory. 
Despite assuming quite strong simplifications while defining 
the problem, the presented procedure may prove very 
useful for computations, though it definitely requires  
detailed analyses and tests on more complex systems 
reflecting real structural elements of technical facilities to be 
performed. 
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