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Abstract. In the article the problem of the decomposition of a concurrent digital automaton for its state machine components is considered. A new 
method of cover is proposed with safe, live and reversible Petri nets. In order to determine basic and correct P-invariants which generate strongly 
connected subnets of the state machine type the suitable linear programming problem based on the matrix of marking corresponding to the global 
states of the net is used. The operating of the method for the example Petri nets is illustrated and benefits in relation to other methods are 
presented.  
  
Streszczenie. W artykule rozważa się problem dekompozycji współbieżnego automatu cyfrowego na jego sekwencyjne składowe automatowe. 
Zaproponowano nową metodę pokrycia bezpiecznych, żywych i powracanych sieci Petriego. Do wyznaczania p-inwariantów podstawowych 
i poprawnych, generujących mocno spójne podsieci typu maszyna stanów używa się odpowiedniego zadania programowania liniowego, bazującego 
na macierzy znakowań odpowiadającej stanom globalnym sieci. Zilustrowano działanie metody dla przykładowych sieci Petriego i przedstawiono 
zalety w stosunku do innych metod. (Wyznaczanie pokrycia sieci Petriego podsieciami typu automatowego).  
 
Keywords: cover of Petri nets, P-invariants, state machine components, linear programming. 
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Introduction 

For the description of the problem of the decomposition 
of a concurrent digital automaton for state machine 
components it is possible to apply Petri nets. Assigning 
strongly connected subnets of the automatic type comes to 
finding the invariants of the net places (P-invariants) which 
have suitable properties.  

Petri net is a three-tuple N = (P, T, F), where 
},...,,{ 21 mpppP   is a set of places, },...,,{ 21 ntttT   is a 

set of transitions, whereas TP  and TP , 
and )()( PTTPF   is the flow  relation between 

places and transitions. Petri net can be presented in the 
form of a bepartible directed graph where nodes belong to 
P and T sets, whereas arcs belong to F set (see e.g. fig. 1). 
Marked Petri net is a four-tuple of PN = (P, T, F, M0), 
where N = (P, T, F) is Petri net, whereas 

...},3,2,1,0{:0     PM  is the initial marking [1].   

Transition t is called enabled in M marking if its each 
input place p contains at least one token, i.e. for each 

}),(:{* FtpPptp   is 1)( pM . Transition which 

is enabled can be fired, which is based on taking one token 
from each input place tp *  and giving one token for each 

output place }),(:{* FptPptp  . Marking M2 is 

reachable from M1   marking if there is a sequence of 
transitions ikii ttt    ...,,, 21 , after firing of whose there appears 

M2 marking from M1 marking. For initial M0 marking and 
reachable markings from M0 it is possible to create so 
called the marking graph, also called the reachability graph, 
where nodes correspond to reachable markings, and arcs 
correspond to fired transitions conducting one marking 
reachable in others (see e.g. fig. 2) [2]. 

The most important dynamic properties (dependent on 
the initial marking) of Petri net are safety, liveliness and 
reversibility. Marked Petri net PN = (P, T, F, M0) is called 
safe if for each marking M reachable from M0  and for each 

Pp  is 1)( pM . Transition t is called live in PN net if it 

can be fired at least once in the sequence of transitions for 
each M marking reachable from M0. PN net is called live if 
each transition Tt  is live in this net. Marking Petri net PN 
is called reversible if for each M marking reachable from 

initial marking M0, marking M0 is reachable from M (see 
e.g. [1]).  

For example, the interpreted steering Petri net (see 
details in [3]) should fulfil all three dynamic properties. The 
places of the net are treated as the local states of the 
modelled transition system, and reachable markings of the 
nets represent its global states. Transitions describe events 
taking place in a discrete system.  
 
Marking equation of Petri nets 

For the description of the structure of Petri nets as well 
as the investigation of structural and dynamic properties the 
incidence matrix nmC   is applied, where rows are 

connected with places, and columns with transitions (see 
e.g. [1, 2, 3]). Element cij of the matrix C is connected with 
place pi and transition tj and is defined in the following way:  

(1)     ijijij ccc , 

where:   









,),(,0

),(,1

Fpt

Fpt
c

ij

ij
ij  when 

 when 
    

and   









.),(,0

),(,1

Ftp

Ftp
c

ji

ji
ij  when 

 when 
 

A pair (p, t) is called a self-loop if p is both in input and 
output of transition t. For the net without a self-loop, matrix 
C defines unambiguously the structure of the net:   
cij = +1 means that place pi is the output for transition tj, 
that is Fpt ij ),(  , 

cij = –1 means that place pi is the input for transition tj, that 
is Ftp ji ),(  . 

Using the incidence matrix C it is possible to give a 
necessary condition of reachability of marking M2 from 
marking M1. To make it easier, marking M is noted in the 

form of a column vector  )](),...,(),([ 21 mpMpMpMM .  

If marking M2 is reachable from M1, so called marking 
equation  

(2)   xCMM  12 , 
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has a nonnegative integer solution   nxxxx ,...,, 21 , 

where value xj defines how many times transition  tj is fired 
in the sequence of successive transitions conducting 
marking M1 to M2 [2]. A characteristic vector x  defines 
which transitions and how many times have to be fired but 
unfortunately it does not give the order. The equation (2) 
brings a necessary condition to the reachability of marking 
M2 from marking M1. Therefore if the system of equations 
(2) is in contradiction for M2, then M2 is not reachable from 
M1. The reverse implication is not true in a general case. It 
can happen that the equation (2) has for a particular M’ a 
nonnegative integer solution x’, but M’ is not reachable 
from M0 (that is none sequence of transitions conducting 
marking M0  in M’ corresponds to vector x’). Such a 
marking M’ is called spurious. [2, 4]. 
 
P-invariants and their properties 

In the further part of the article Petri nets, without a self-
loop, which are live, safe and reversible are considered.  

The equation of markings can also be used to examine 
the properties independent from the initial marking, but only 
from the structure of Petri nets.  

Vector   myyyy ,...,, 21  with nonnegative and integer 

coordinates is called P-invariant if it is a solution of the 
system of equations [1]: 

(3)   0 Cy . 

Non trivial solutions 0y  become interesting.  

The system of linear equations (3) can be solved by 

bringing the completed matrix of the system  0 ,C  to the 
base form and then assigning a general solution and base 
solutions (see e.g. [5]). 

Assigned P-invariants can be applied, among the 
others, for the decomposition of a concurrent digital 
automaton as the sets of places determining its potential 
sequential automatic components [6]. 

If for some y  the equation (3) is satisfied, then for 

vector x  as well as markings M0 and M satisfying the 
equation (2) becomes  

(4)   00 MyxCyMyMy   . 

The equation is satisfied (4) regardless of value x , thus for 
each marking M reachable from M0. 

For instance, for the net from example 1. one of P-

invariants is described with   1,1,0,1,,1     0 y . It means that 

for each place M reachable from M0 is 
1)()()()( 6531  pMpMpMpM .  

If y  and y   are P-invariants, then for integers 

0,    vector 0 yyy   satisfies the equation 

(3), and thus is also P-invariant [3]. P-invariant 0y  is 

called basic if it is not a sum of other P-invariants different 
from 0. 

P-invariant is called correct (meets Petri-Holt demand 
about the unity of place and time [7]) if it has exactly one 
representative in each reachable marking (a global state) 

[8]. For instance, P-invariant   1,1,0,1,,1     0 y is basic and 

correct for the marking net from example 1 (see Examples).  
On the basis of the equation (3) it is possible to 

determine P-invariants using ILP technique (integer linear 
programming), e.g. taking a linear criterion and the system 

of linear limitations in the form of (3) as well as 0y , 
mZy  and 1...21  myyy  (see e.g. [9, 10]). In the 

work of [11] other way of assigning P-invariants was 
proposed using decomposition of Petri nets on so called 
functional subnets.  

The direct application of the incidence matrix C to 
assign P-invariants has however the following defects:  

(a) it is not possible to avoid condition mZy  as the 

equation (3) can have non-integer solution , e.g. if 0y  is 

P-invariant, then ky /  for Nk  satisfies the equation (3), 

but it does not have to belong to mZ ; 
(b) as a solution it is possible to obtain P-invariant, 

which is not basic (is a sum of basic P-invariants);  
(c) as a solution it is possible to obtain P-invariant, 

which is not correct.  
 
Assigning P-invariants 

For the decomposition of nets for state machine 
components only these P-invariants are used which are 
basic and correct.  

For marking Mk reachable from M0 if P-invariant y  is 

basic and correct, then appears an equation [8]: 

(5)   1 yM k . 

Let rmMM   mean the matrix of markings, whose 

columns are vectors corresponding to reachable markings, 
where r is a number of reachable markings, altogether with 
M0. Using (5) there is a condition:  
If vector y  is basic and correct P-invariant, then  

(6)   1 yMM . 

The solutions of the above system of equations become 

basic and correct P-invariants if mZy  or vectors, which 

correspond to incorrect P-invariants or the sum of basic P-

invariants (non base solution) if mZy  (see example 3).  

Using (6) it is possible to determine P-invariants, which 
have desired properties, are basic and correct, without the 
necessity of assuming that variables are integers. For 
instance, in order to assign P-invariant including the most 
(max) or the fewest (min) local states it is necessary to 
assign the solution of the problem in the form of:  

   max (min)  y1  

(7)   subject to 1 yMM , 

     0y . 

Applying directly only the incidence matrix and condition 

(3) it is impossible to assign y1 max , because if y 

satisfies the system of equation 0 Cy , then ysy ' , 

where  ...,3,2   s  also satisfies this system. 

 
Assigning the cover of Petri nets 

Petri net, where 1**  tt  for each Tt  is called 

state machine and is marked with SM. The subnet of Petri 
nets generated by basic and correct P-invariant is a 
component of SM type (SMC), i.e. a firmly coherent net SM 
(the subnet of the automatic type) [8, 10]. 
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Let qmII   mean the matrix, whose columns are vectors 

corresponding to the assigned (not necessarily all) basic 
and correct P-invariants, where  q is the number of P-
invariants.  

The condition, for which a given set of basic and correct 
P-invariants could include the cover of the net with the 
subnets of the automatic type, can be presented in the form 
of:  

there is  qz 1,0    such that  

(8)   1 zII . 

If the condition (8) is satisfied for a given z , then 
1)( lz  means that P-invariant Il  is taken for the cover of 

the net, 0)( lz  means that P-invariant Il  is not taken for 

the cover of the net. If however the system of inequalities 
(8) has not a solution, it means that the set of P-invariants 
with the matrix II does not include the cover of the net.  

Using (8) it is possible to assign the cover of the nets, 
without the necessity of assigning all basic and correct P-
invariants. If the matrix II represents all P-invariants, which 
are basic and correct, then in order to cover the net it is 
enough to use as many P-invariants from the matrix II as 
there are local states in the global state with the biggest 
number of elements.  

Algorithm 1. presents the proposal of assigning the 
cover of Petri net with subnets of the automatic type. In 
order to assign proper SMC the subproblems (7) are used.  

The following markings have been accepted:  
i – number of place; j – number of P-invariant; q – 

number of assigned P-invariants; MM – matrix of markings; 
II – matrix of assigned P-invariants (II(:, j) – j-th column of 
matrix II); gM – maximum number of local states in global 
states; zI – vector, whose i-th coordinate informs how many 
times place pi has been covered; z – vector, whose j-th 
coordinate informs if j-th P-invariants from matrix II is taken 
to cover the nets (z(j) = 1), or not (z(j) = 0). 

 
Algorithm 1. 
 
K.O.  

  0,...,0zI ;  II ; 0q ; ))(max( MMgM sum ; 

K.1.  
FOR  i = 1 TO m DO 
 IF  zI(i) = 0  THEN 
  Assign a base solution y for problem {(7), y(i) = 1}; 

  IF mZy  THEN 

    yIIII , ; 1 qq ; yzIzI  ; 

  ELSE 
   BREAK; 
  END; 
 END; 
END; 

  1,...,1z ;  

IF  q > gM  THEN 
 GO TO K.2. 
ELSE 
 STOP; 
END; 
K.2.   
j = 1; sz = q; 
WHILE  (sz > gM) & (j < q)  DO 
 )(:, jIIzIzIp  ; 

 IF  zIp ≥ 1  THEN 
  zI = zIp; z(j) = 0; 1 szsz ;  
 END; 
 j = j +1; 
END; 
 

If the problem in K.1. does not have a solution for a 
given i, then the net does not have basic and correct P-
invariants covering i-th place. If in the solution y of the 
problem in K.1. there are non-integer coordinates, then P-
invariant corresponds to the obtained vector is not correct; 
that is does not have SMC covering place i (see example 
3).  

After completing the step K.1. in the columns of matrix II 
there are the assigned basic and correct P-invariants. If the 
number of column sz (P-invariants) is bigger than gM, then 
not all assigned P-invariants are necessary to cover the net. 
In such a situation step K.2. is conducted, where redundant 
P-invariants are assigned. Eventually, in vector z there is 
the information, which of the assigned P-invariants are 
taken to cover the net (z(j) = 1), and which ones not (z(j) = 
0), while 1 zIIzI .  

 
Examples 

In this part three essentially different examples of Petri 
nets have been presented, for which the algorithm 
described in the previous point has been tested. In all 
examples the nets are live, safe and reversible.  

Example 1.  
The example has been applied in [3] (p. 35). In fig. 1. 

Petri net has been presented, and in fig. 2. its reachability 
graph.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Petri net for the example 1. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Reachability graph for the net from example 1. 
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Fig. 3. Petri macronet for the example 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Reachability graph for the macronet from example 2. 
 
The reachable marking matrix corresponding to the 

reachability graph from fig. 2 has the form of: 





















011000

100010

001110

000001

MM  

 
Using algorithm 1 (variant with maximization in (7)) the 

matrix of P-invariants has been obtained in K.1.: 

     


















101001

010011

110101

II  

 
All three P-invariants are necessary to cover the nets 

(gM = 3). Therefore   1,1,1   z  and 

  2,2,1,1,1,3      zIIzI . 
 

Example 2.  
The example comes from [12], it is also examined in the 

work of [13], the macronet is presented in fig. 3, and 
reachability graph in fig. 4. In the initial marking places 
MP11 and MP25 have been marked. 
 The matrix of reachable markings corresponding to the 
reachability graph from fig.4 has the form of:  









































101100000000

001000110000

100111000000

000011110000

000010011000

100001100100

100000001100

000010010011

100000000111

110000000000

MM

In the following matrix all basic and correct P-invariants for 
the examined net and the initial marking have been 
presented: 

   































011001001001

010100101010

010100010100

100000010000

011010000100

011001001010

010100101001

P  

Let Ij mean  j-th P-invariant from matrix P (j-th row in 
matrix  PT ), j = 1, 2, …, 7. Using Algorithm 1 (variant with 
maximization in (7)) P-invariants II = [I7, I6, I3, I5, I4] have 
been obtained in K.1. As gM = 4 and q = 5 step K.2 is 
feasible, in which a redundant P-invariant I5 is assigned. 

Thus   1,0,1,1,1     z  and   1,3,2,1,1,1,1,1,2,1,1,1            zI . In 

case of minimization in (7), II = [I1, I2, I3, I4] is obtained. As 

this time gM = q, then   1,1,1,1    z  and 

  1,3,2,1,1,1,1,1,2,1,1,1            zI .  
It is necessary to observe that whether basic P-invariant 

is correct depends on the initial marking. For the studied net 
there are also two basic P-invariants 

  1,1,1,0,1,0,1,0,1,0,0,18            I  and 

  1,1,1,0,1,0,1,0,1,0,1,09            I , which however are not 

correct with the initial marking. It appears for them 

29080   IMIM . For the initial marking, in which places 

MP5 and MP11 are marked, P-invariant I5 is not correct 
whereas all the rest are correct, including I8 and I9. 

t1

MP3

MP6

MP11

MP7

MP10

MP2

MP8

MP9

(2,5,8) (3,6,9) (4,7)
MP1

MP5

MP25
MP4

t12

t13

t17

t14

t7t8

(16,18)

(11)

(12)
(13)

(15)

(14)

(17,19)

(20,1)
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Example 3.  
The example was presented in [2] (p. 36), was also 

used in the work of [14], Petri net is presented in fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. Petri net for the example 3. 
 
For the net from fig. 5. the matrix of reachable markings 

has the form of: 

























10100

10010

11000

00110

00001

MM  

The only solution of the sub problem {(7), y(1) = 1}  for 

this net is vector   5.0,5.0,5.0,,1    0.5 y . The remaining 

sub problems {(7), y(i) = 1}, for i = 2, 3, 4, 5 do not have 
solutions. Therefore the examined net has only one basic 

P-invariant   11112I . Moreover 

   2,2,22    , 2,IMM , that is the only P-invariant has two 
representatives in each reachable marking, thus it is not 
correct. The net cannot be decomposed into the state 
machine components.  
 
Conclusions 

 In the paper the method of assigning P-invariants of 
Petri nets and decomposition of the nets into components of 
the automatic type has been presented, based on the 
matrix of reachable markings. In this method only basic 
invariants of places are assigned, which also are correct 
with the applied initial marking. A solution of the suitable  
linear programming problem is used. Three examples of 
safe, live and reversible nets have been presented. For the 
nets fulfilling those three conditions, decomposition into 
SMC can be not possible (example 3), can be explicitly 
defined (see example 1), several variants of decomposition 
can be obtained as well (example 2).  

Other methods of assigning the components of the 
automatic type are also being developed, which are based 
on reachable markings. The work of [15] presents the 

application of assigning the transversals of the subsets of 
concurrent places and the Gentzen sequent calculus, 
whereas in the work of [16] there is the application of 
colouring concurrency hypergraph.  

The assigned components of the automatic type are 
applied to, among the others, coding the places of Petri 
nets or parallel decomposition of the nets [17, 6, 18]. The 
decomposition of Petri net for its state machine components 
simplifies the process of design and synthesis of a digital 
system. 
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