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Abstract: In the report we deal with the generalisation of transfer function which is derived from the three-gate model of the inter-digital 
transducer. Stated generalisation of transfer function includes the influence of adapter circuits attached to the transducer and allows its 
application for the description of any model´s functioning. 
 

Streszczenie: Analizo przetwornik używany do zasilania i detekcji elementu SAW – z powierzchniową falą akustyczną. W modelu 
uwzględniono także układ adaptera. (Uogólnienie funkcji transferu przetwornika i filtru bazującego na elemencie z akustyczną fala 
powierzchniowa SAW) 
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Slowa kluzcowe: powierzchniowa fala akustyczna SAW. 
 
Introduction 

Analyzing the activity of inter-digital transducer (IDT) 
which is used for excitation and detection of surface 
acoustic waves (SAW) at the moment of realisation of 
acoustic-electronic components we stem most commonly 
from the three-gate circuit model (1). Depicted model allows 
us to state all three-gate transducer transfer functions with 
the presence of so called secondary features like acoustic 
reflections created at the edges of electrodes as a 
consequence of weighted electric load on the surface of the 
pad (2), (3), which is at the same time often applied to make 
calculations of delay circuits (DC) or filters with double IDT 
and various matching circuits. To calculate the transfer 
functions taking the secondary features into consideration it 
is convenient to use three-gate matrixes. Calculated 
transfer functions based on the models of “weak binding” 
does not include the influence of matching circuits and this 
method does not allow us to calculate reflection acoustic 
coefficient of transducer. 

Reflections from the electrodes of the transducer are 
often little, eventually they can be strongly choked down by 
the use of doubled electrodes. In the depicted case it is 
possible to use three-gate model to derive the 
generalisation of transfer function in which there is included 
the influence of matching circuits and allows us to derive 
the nexus between the tree-gate activity model and various 
geometrical models of “weak binding”. 
 

Complex transfer function, diffusion coefficients and 
diffusion loss 

In the Fig.1 there is a filter with SAW with linear phase 
characteristics which is most often composed of two IDT. 

 
 

Fig.1. Most common filter arrangement with PAV 
 

The left IDT (apodized) changes electric signal on the 
SAW and the second transducer, most commonly 
homogeneous integrates the energy of incoming wave and 
converts it to the electric signal. This process is linear, 
reciprocal and in the ideal case we can mathematically 

express it using a convolution, or equivalently in the 
following form (4): 

(1)       


 jz ejHjHU

UjH  21 ,          

where: 
 l   is a SAW delay between IDT and   is a 

SAW velocity. 
The filter transfer function as it results from the equation 

(1) is fully determined by the features of IDT because the 
pod material does not have dispersal features. The 
transducers can find themselves in a different distance from 
each other; they can be “weighted” and can have a different 
geometry of electrodes. The right IDT (homogeneous) is 
most commonly broadband. Then we can approximately 
express the transfer function with the apozited 
transducer       jHjHjH 11  . 
Based on the circuit theory it is possible to describe IDT in a 
complex way by using the matrix coefficients Yij, which are 
defined by the formula 

(2)        



3

1j
jiji UYI , (i=1,2,3).               

To simplify we will further assume IDT to be lossless (e.g. 
we do not consider the creation of volume waves, electrode 
resistance, diffraction and loss by the SAW diffusion), then 
coefficients Xij are often imaginary. 
      It is convenient besides the admittance coefficients to 
define the system of complex transfer functions 

(3)   
j

i

j

i
ij U

U

G

G
jT 2 ,                      

where Ui is a voltage of transfer or reflection SAW on the 
load Gi, ii-level gate if a voltage Uj is attached to the j-level 
gate with conductance Gj. 
      Then it is possible to identify the diffusion coefficients pij 
with the nexus after equation adjustment (3), applies the 
following: 

  
jjijii GUTGU 222

2

1
              and 

(4)  
jiji PTP 2

2

1
 ,      

2

ij

jUseful

i
ij T

P

P
p  ,      

where Pi is transferred or reflected power of i-level gate and 
P(Useful) is a utilizable from adjusted generator on the j-level 
gate. Then Pij is a part of power reflected by i-level gate and 
pij (i≠j) is a part of transferred power j-level gate to i-level 
gate (e.g. characterizes the conversion of electric energy to 
acoustic energy and vice-versa). 
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      Based on the IDT reciprocity and symmetry results that 

23132211 , pppp  and ,jiij pp   respectively 
jiij TT  . 

Then we can define the diffusive (or transfer) loss as 
following: 
(5) 

ijij pb log10 ,    [dB]                     

where bij is a loss caused by a reflection i-level gate and bij 

(i≠j) is transfer (insertion) loss between the i-level j-level 
gates. 
 

Three-gate model of inter-digital transducer 
      We derive the IDT transfer function while coming from a 
single-electrode IDT which we will model by using one-
dimensional cross field model, depicted in the fig. 2a and 
2b. We can also use an alternative longitudinal field model 
which is the most convenient one for some pad materials 
with low coefficients of electro-mechanical binding K2 [1].  
Using the most common materials like LiNbO3or Bi12GeO20 
we stem from the cross field model which characterises 
better the IDT and at the same time is mathematically more 
accurate.  

 
          a) electric field division,       b) equivalent electric scheme 
Fig. 2. Single-electrode IDT 
 

      Like shown in the fig. 2b, single-electrode model has 
three gates (one being electric and other two) symmetrically 
electric). Using the equivalent currents and voltage we can 
express the particles velocity and mechanic power on 
acoustic gates. The dependence between these currents 
and voltages (i.e. )iiji UYI  ) can be expressed by the 

elements of admittance matrix. For the k-level IDT leg 
applies: 

(6)
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where 
k

k
k f

ffD 


  2  is a phase shift emerging on 

the k-level leg, fk = /2Dk  is a synchronised frequency k-
level leg and Dk is k-level leg length. 
      Transformation rate is given by the nexus: 

(7)    0
221 ZKCfp pkk

k
k  ,  1 /

2 kK K q  
    

,  

where Cpk is k-level leg capacity, (as characteristic 
impedance we chose the unit one, Z0=1). The factors 








2
1K

 and  kqK are totally ecliptic first-order integrals 

with 

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k

k
k D

lq 2sin   module, where lk is a width of k-level 

integral. These integrals can be found in the equation (7) as 
a consequence of capacity dependence on the rate of 
electrode and gap width. The k-level leg capacity is given 
by the formula: 

(8) 
212 
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pk
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
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 21 k

k

qK
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where wk is k-level leg aperture. The permittivities 1 and 2 
express anisotropy features of pad material in direction of 
diffusion to the pad. The value Cpk like it stems from the 

nexus (8) increases with the growing rate 
k

k
D

l Next, to 

simplify, we will suppose that the width of the electrode and 

the gap is equal (
2

k
k

Dl  ). Then the elliptic integrals in 

the equation (8) equal one. 
 
IDT Transfer function 
      IDT transfer function at generating the SAW at certain 
stated conditions can be expressed by the following 
formula: 

(9)     jTjH 131  ,                          

and IDT transfer function at SAW detection by the nexus: 

(10)     jTjH 232  .   

                        

 
 

a) generation regime,       b) detection regime 
Fig.3.  IDT equivalent model scheme as a triple gate: 
 
      But with the symmetrical IDT it is 

21 UU  and 

2313 TT   that means it is enough to explore the transfer 

function  jT13  given by the nexus: 

(11)  



U

U

GZ
jT 1

0

13

2
 .                 

     Solving the equation (11) we firstly calculate the U1/U2 
rate then we will suppose that the ideal voltage source be 
connected to the electric gate ( G ). Considering that 

every from n electrodes can with the circuit shown on the 
fig. 2., electric circuit short bond has a consequence that 
acoustic transfer conductances transfer reflection-free SAW 
and at the same time these are completely unbound and 
independent on the electric gate. Subsequently we can 
explore n IDT electrodes as a set of independent electric 
sources and we can set acoustic power (commensurable to 
U1) for the IDT in the process of generalisation as a sum of 
mechanical voltages amplitudes (with convenient phase) 
that are generated by n electrodes. 
      The admittance coefficient given by the equation (6) will 
be used to calculate the amplitude of mechanic voltage 
generated by a single electrode. K-level IDT electrode 
generates the waves of mechanic voltage in both directions 
and acoustic power in the centre of electrode is given by the 
following formula: 

(12) 




 2sin3

k
kk pjUF .                 

    We reach the total acoustic power if we multiply the 

previous equation by the nexus kftje 2
 expressing SAW 

diffusion towards the end of transducer (e.g. to the gates 
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n.1 or 2) and the sum of particular electrodes contributions, 
while the following applies: 

(13) kftj

k

n

k
k ef

fpjUU  2

1
31 2sin 







  .                

      In case of IDT connection to the real source ( G ) 

applies between the voltages Uv and U3 the following: 

(14)  





 







G

jYGUU in
3

,           

where  jYin  is IDT input admittance and Gv is an 

anode slope conductance of the source (fig.3a).  
      The IDT transfer function can be calculated by 
instituting the equations (13) and (14) to the equation (11) in 
the following form: 

(15)    
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Generalised IDT transfer function 
      Using the cross field model It is convenient to divide the 
electric input admittance  jT13

 which is a very important 

constant to calculate 
inY  into capacity susceptance which is 

parallely connected to emitting admittance  jYr : 

(16)     Trin CjjYjY   ,             

(where CT  is IDT static capacity). Reference frequency f0 
can be defined like non-dimensional emitting admittance 
given by the nexus 

(17)    
  T

r

rr

r
r C

Q
YjY

jYjy
0Re 

  ,   

where  

(18)   


jY
CQ

r

T
r Re

0 ,               

is an emission quality coefficient. Similarly we can define 
“endurance” quality coefficient Qv by the following formula 

(19) 





G
CQ T0                                      

and introduce non-dimensional transformation rate defined 
by the formula 

(20) 
T
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T

r
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after adjustment we can define the transfer function 

 jT13  as following (Z0=1): 
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In the previous nexus Yr and the sum in the dividend of the 
fraction approximately equal 1, function  jT13

  is normed 

in a way that 13

2

13 pT   The coefficient Qr depends on 

transducer´s geometry, is indirectly commensurable to K2 
and can be in a simple case expressed by the nexus 

(22) .
4 0

2 f

f

K
Qr




                               

      It is efficient to generalise the equation (21) at the 
further analysis. We suppose that a matching circuit is 
connected to the IDT electric gate according to the fig.4. In 
such a case the transfer function T13 and the reflection 

coefficient T11 can be expressed by the following 
generalisation: 

(23)    
 
 

jC

jA

Q

Q
jT

r

2
13  ,                

(24)     
 
 

jB

jA

Q

Q
jT

r

2

11  .               

 
Fig.4. IDT equivalent scheme model on triple gate  basis with 
optional double gate matching circuit  

 

       
 
Fig.5. IDT equivalent scheme 
 

The constant  jA  is the scheme coefficient and is 

dependant only on the IDT geometry.  Circuit coefficients 
 jC   and    jB    are   dependent   on   the   input 

admittance  jYin  of the transducer, source impedance 

or load and on the features of matching circuit which are 
expressed by the elements of gradual cascade matrix A11, 
A12, A23, A22. 

      The scheme coefficient  jA  is in the case of cross-

field model (as well as in the case of function   model) a 
Fourier transformation of conveniently located SAW 
generating sources. Can be expressed by the nexus: 

(25)      



n

k

ftj
k

a

kejeGjA
1

2

0

2  , 

where  jek  is called element coefficient of k-level 

electrode and exponential factor expresses the delay and 
space location of electrodes. Normalization coefficient  

 0

2
aG

  is used for circuit models containing dimensional 

constants. As a consequence,  jA   equals one and 

insertion loss is initially given by the constants Qv and Qr in 
the equation (23). 
      Element coefficients for two weak binding models and 
two different three-gate models are included in the Table 

n.1. Model of cross field and model of functions   have 
similar element coefficients because the geometrical shape 
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of exciter functions is almost identical. At the same time the 
element coefficient of circuit model generalisation 
resembles the element coefficient of weak binding model 
that stems from the solution of electric field because all the 
stated models use real IDT electric field as a exciter 
function. 
 
Table 1. Element coefficients of some IDT activity models 

Model Circuit coefficients  jek
 

 
 

Of functions   



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



 k

k
fll cos2 , lk is the distance 

between  functions   
Harmonic (direct solution 

of electric field) 
F,T,(dEi/dx), Ei  is a part of 
intensity vector 
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f

f
w
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w0 is the aperture of there 
apodized transducer 

 
 

 
Generalised 

 kkFj  ,
2

1 ,  


 f2  is 

wave number,  k  metallization 

coefficient 
 
 
Table 2. Circuit coefficients for simple matching circuits 

Matching 
circuit 

Gradual 
cascade 
matrix 

Circuit coefficients 

 jC ,  jB  

Without 
matching 
the circuit 1,0

0,1
 

    inYRjBjC   1  

Parallel 
admittance 
Yp, e.g. 
inductor, 
resistor 

1,

0,1

pY

 

     pin YYRjBjC   1

 

Serial 
impedance 
Zs, e.g. 
inductor, 
resistor 

1,0

,1 sZ
 

   sin ZRYjC   1

    















 RZYRjB
s

in
1  

Other than 
parallel 
element 2221

1211

,

,

AA

AA

 

 jC  and  jB can have 

various shapes and multiple 
dependence from Rv 

 
      Frequency dependences caused by matching circuit 
enable to include two circuit coefficients  jC  and  jB  

while the circuit coefficient  jC  for transfer function  T13 

and circuit coefficient  jB  for the reflection coefficient T11  

are formulated by the formule: 

(26)    inin YAARYAAjC 22211211   ,    

(27)   














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RAA

RAA
YRjB in

2212

2111 .           

The elements of gradual cascade matrix for random 
matching circuit are defined by the formule: 

(28) 
3

3

2221

2211 .
,

,

I

U

AA

AA

I

U

L

L  .                     

In the table n.2 we mention the values of both circuit 
coefficients for some frequently used matching circuits. In 
case of that the circuit coefficients equal 012 A , 122 A  

(then  jB =  jC ) then the circuit coefficient for 

coefficient of reflection is given by the following formula: 

(29)        jCjTjT 2
1311 2

1
 .                     

Based on the stated nexus which is valid only for the 
matching circuits composed of the parallel elements (or 
doubled conductor) we can assess the rate of insertion loss 
and three times transferred signal for the parallel tuning 
circuit. 
 
Conclusion 
      In the report we derived generalisation of transfer 
function of transducer and reflection acoustic coefficients 
based on the defined complex transfer function, diffusion 
coefficients and diffusion loss with the generalisation being 
achieved by the introduction of system coefficient and 
circuit coefficient. The significant advantage of installed 
functions lies at the fact that they allow the application of 
random model on the process of modelling the IDT activity 
and at the same time they involve the influence of matching 
circuits.  
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