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Abstract. The paper presents modelling of overhead line dynamics. The model of overhead line (OHL) shaking is generally based on the 
superposition of harmonic components. Individual harmonic coordinate components are finally composed together. The accuracy of the calculation is 
determined by the number of harmonics calculated and other parameters. The model is actually a combination of continuous and discrete 
calculations. In the case study OHL ACSR 350/59 is analyzed.  
 
Streszczenie. W artykule omówiono zagadnienie modelowania dynamicznego linii napowietrznej. Model linii napowietrznej (OHL) jest zasadniczo 
oparty na superpozycji składowych harmonicznych.  Dokładność obliczeń jest określona przez liczbę harmonicznych i inne parametry .Model jest w 
rzeczywistości kombinacją obliczeń ciągłych i dyskretnych. Szczegółowo przeanalizowano studium przypadku OHL ACSR 350/59 (Model 
dynamiczny zjawisk mechanicznych w linii napowietrznej). 
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Introduction 

The main benefit of using dynamic models consists in 
evaluation of weather influence depending on its location 
and time domain. As weather influence may be considered 
wind force, icing, increased conductor current flow [1], 
temperature change etc. The dynamic model is, according 
to its complexity, also useful to simulate various mechanical 
wave phenomena such as galloping [2, 3, 4]. Usage of 
models makes characteristic oscillations analysis [5] more 
accurate and easy. The results contain also stable and 
unstable spaces around the operating state. The states in 
the unstable region of the system excitation could result in 
the wire damage. The described model is a continuous 3-
DOF (degrees of freedom) model. A simplified modification 
of a 2-DOFs model is described in reference [6]. 
 
Dynamic model of wire 

The analysis of dynamic behaviour is based on the 
wave equations (1-3). The simulation conditions are 
depicted in Fig. 1 and 2 - the situation can be taken as a 
wire strained between two towers. The model is constrained 
as a string, which can move between the fixed points in 
horizontal and vertical directions and can also rotate. The 
possibility of rotation of a wire along its axis is important for 
simulation with icy wire and is used to solve combined task 
with icing and wind [7]. This situation is depicted in Fig. 2 

 
Fig.1. Overhead line field between the towers 
 

 
Fig.2. Forces and torque of a force affecting the wire 
 

The dynamics of the wire movement [8, 9] is described 
by three partial differential equations. The first equation 
describes the motion of wires in the vertical direction 
depending on the longitudinal position (variable z) and time 
t. The second equation describes the wire motion in the 
horizontal direction. The third equation then adds rotation 
(torsion) θ. Functions y , x  and   depend on the 
longitudinal position z  and time t . 
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where m denotes the mass of wire per 1 m length, I is the 
moment of inertia, Cy, Cx, Cθ stand for the damping 
coefficients [10, 11], T is the mechanical stress in the 
longitudinal direction of the wire, GJ stands for the torsional 
stress, Fv, Fh are the exciting forces, Mt denotes the torque, 
and, finally, L denotes the total length of the wire. 
 

The solution of the system of equations strongly 
depends on the boundary conditions. In our case, the wires 
at both ends are fixed and thus: 
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The solving process of the system (1-3) is based on the 
possibility of separation of variables (with respect to the 
position and time). This separation is used as a 
transformation of position by the Fourier transform. This 
results in a new set of equations for each harmonic: 
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The resultant position of the wire is obtained by the 

superposition of the solutions of equations (6-8) for each 
calculated harmonics. 
 
Excitation forces 

The excitation force model regards the gravitational 
forces, forces produced by wind blowing and consequent 
drifting of the wire. 

The gravitational force is simulated as a uniform load 
induced by the gravitational field effects. It is given by the 
formula 
 
(9)  vF mg   
 
where g denotes the gravitational constant and m is the 
weight of the conductor per one meter (including possible 
ice). 
 

The effect of wind blowing is given by the wire wind 
resistance. The wire is carried and rotated in this case. The 
constants describing the relationship between the wire and 
air are: 
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where air  is the air density and cond  denotes the wire 

diameter. 
 

Wind acting on the wire results in two orthogonal 
components of the forces. The first one is the force DF  

applied in the direction of the wind motion (thus, the main 
direction). The second one is the component  LF , which is 

orthogonal to the main direction of blowing. The wire is 
influenced also by the torque ωM  causing the rotation of 

both the wire and ice. The positions and orientations, 
including the actions of forces, are shown in Fig. 3. The 
figure also includes an ice element. The component forces 
are described by the set of equations (12–14). 

 
Fig. 3. Wind influence - diagram of angles and forces  
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where rv  is the relative wind speed and DC , LC , MC   are 

the transformation functions. 
 

These transformation functions describing the 
distribution of forces and torque components depend on the 
directional angle  . These functions must be obtained from 
the measurements in an aerodynamic tunnel. 

A relative wind speed is another problem to be solved. 
This speed is calculated as relative, because the wire 
generally moves, too. The velocity components rxv  and ryv  

are given by the formulas 
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where  x  and y  are the positions of the conductor, ir  

denotes the distance from the centre of gravity of the 
conductor and centre of gravity of the ice, and   stands for 
the rotation of the wire with respect to the rest position 0 .  

Now 
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The angle   is an important parameter for functions 

DC , LC , MC . Its value is determined from 
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Since the forces DF  and LF  are described in the 

system oriented in the direction of the blowing wind and the 
other equations are in the ground coordinates, it is 
necessary to transform the results in the directions of vF  

and hF  
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Case study 

The simulations are based on equations described in 
the previous section. For this case study, simulation of the 
ACSR 350/59 wire [12] was chosen. Functions DC , LC  

and MC  were taken from [2], because their determination 

would require a complex technical measuring equipment 
(aerodynamic tunnel with a tight wire and controlled climatic 
environment). The span length [13] was set as 224a  m 
and 0h  m (the difference in height of the conductor 
support points). The icing of the wire was 0.6 kg/m and 
tension was assumed 35600T  N. 
 
Basic simulation 

The simulation shows the step response of the new wire 
under the constant influence of wind speed  0 16, 5.2v m 

condition (relative angle position of icing is assumed to be 
steady). During the calculation only odd harmonics were 
taken into account (within the range from the first to seventh 
harmonics). Even harmonics are zero functions in this case. 
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Fig. 4. x -coordinates in the middle of wire span ( / 2z L ). 
 

 
Fig. 5. y -coordinates in the middle of wire span ( / 2z L ). 

 
Fig. 6. Rotation of the wire   in the middle of the wire span 

( / 2z L ) 
 

 
Fig. 7 Schematic representation of wire movement due to wind 
influence. 
 

Figures 4–6 show wire positions for / 2z L  (the middle 
of the wire span) in time. Since the wire is influenced by 
constant wind blow 0v  and system is in stable state, the 

position of the wire results in the stable equilibrium. 
Schematically the situation is shown in Fig. 7 where "State 
0" is the steady equilibrium for the state without wind and 
"State 1" is the stable position with the influence of a 

constant wind of velocity 0v . Coordinate y  contains 

gravitational forces causing an offset. 
For determining the position of each coordinate it is 

necessary to evaluate a few harmonics (6-8) for each 
component. Sub-harmonics results are shown in Figs. 8–
10. Since the conductor own load is constant and other 
parameters are also homogenous (including icing), the 
solutions do not contain even harmonics. This fact results in 
a simplification of the calculations and even harmonics have 
not to be taken into account. In the case of a non-constant 
load, this simplifying assumption does not generally apply. 
 

 
Fig. 8. The first harmonic amplitudes of position in time 

 
Fig. 9. The third harmonic amplitudes of position in time 

 
Fig. 10. The fifth harmonic amplitudes of position in time 
 
Effect of icing position 

The following simulation is done under the same 
conditions as above. The only change is in the variation of 
icing position angle 0  (see Fig. 3). The results for the 

steady state are listed in Table. 1. The values in the table 
show that icing created under windy conditions leads to 
really different results than in case of homogeneous 
conditions. 
 
Table 1. Steady state value for different angle 0  

0  x ( / 2z L )  y ( / 2z L )  ( / 2z L ) 

(˚) (m) (m) (˚) 
  18.000 -1.199 -3.819    0.007 
    0.000 -1.355 -3.891  22.074 
 -18.000 -1.619 -3.677  20.375 
 -36.000 -1.877 -3.250 -15.042 
 -54.000 -2.079 -2.895 -78.379 

 
Influence of calculated harmonics on simulation results 

The influence of harmonic components taking into 
account the calculated steady state is shown in Table 2. 
The influence of harmonics is determined by repeated 
calculations throughout the simulation by reducing the 
number of harmonics in the calculation. This is not only the 
decomposition of the resulting values in the steady state. A 
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simple decomposition cannot be used because it is a 
nonlinear system. 
 
Table 2. Steady state value harmonics taken account 

Harmonic 
order 

x ( / 2z L ) y ( / 2z L )  ( / 2z L ) 

(-) (m) (m) (˚) 
1 -1.6876 -3.7751 0.00617 
3 -1.6249 -3.6355 0.00585 
5 -1.6385 -3.6657 0.00589 
7 -1.6336 -3.6547 0.00588 
9 -1.6359 -3.6598 0.00588 

 
The values show that with the growing order of 

harmonics there decreases its influence on the results. 
Effect of the ninth and higher harmonics is then low, and 
their added value in comparison with the complexity of the 
calculation is negligible. 
 

Conclusion 
This paper describes a 3-DOF model for modeling of the 

dynamic behaviour of a stretched wire. The main outer 
influences on the model have been described. Furthermore, 
the wind effect on the conductor with icing has been 
described. 

In the basic case study it has been shown a wire with 
constant icy and wind blow. In the case study simulations 
show the position of the middle of the span for all 3 
coordinates. Furthermore, the behavior of each harmonics 
is calculated. The time evolution of displacements , ,x y   
depending on the coordinate z  can be viewed for other 
locations, but it does not take importance for this distribution 
of the forces. In this part it has also been studied the 
influence of turning of the frozen wire. From the simulation it 
is clearly visible that the wire with significant icing placed in 
one direction (center of gravity is shifted from the center of 
wire) is very sensible on wind parameters (Tab. 1). In the 
real situation, icing is placed asymmetrically. In this case it 
is possible to choose a characteristic direction and use an 
average value. For more accurate results it would be 
necessary to describe the distribution function for icing 
including the directional angle and shift of gravity along the 
wire length z . 

As a part of the study the influence of the number of 
solved equations was calculated, where one set of 3 
equations represents one harmonic. From this simulation 
and from the model it can be deduced that the even 
harmonics do not affect the solution for uniform distribution 
of forces and weight. Furthermore, the influence of the ninth 
and higher harmonics is for simulation negligible compared 
with the complexity of calculation. 
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