A 10.7-MHz Fully Balanced, Q-of-267, 103-dB-Dynamic-Range Current-Tunable Gm-C Bandpass Filter

Abstract

A 10.7-MHz fully balanced, high-Q, wide-dynamic-range current-tunable Gm-C bandpass filter is presented. The technique is relatively simple based on three fully balanced components, i.e. an adder, a low-Q-based bandpass filter and a differential amplifier. The high-Q factor is possible through a tunable bias current. As a simple example at 10.7 MHz , the paper demonstrates the high-Q factor of 267 , the low total output noise of 2.089 Vrms , the 3rd-order intermodulation-free dynamic range (IMFDR3) of 82.59 dB and the wide dynamic range of 103 dB at $1 \% \mathrm{IM} 3$. The center frequency is current tunable over 3 orders of magnitude. Comparisons to other $10.7-\mathrm{MHz} \mathrm{Gm}-\mathrm{C}$ approaches are also included.

Streszczenie. Zaprezentowano strony prądowo filtr zrównoważony 10.7 MHz pasmowy Gm-C. Technologia bazuje na trzech elementach sumatorze, filtrze pasmowym i wzmacniaczu różnicowym. Osiągnięto dużą dobroć dzięki strojeniu prądowemu. Przedstawiono przykład filtru i porównano z innymi filtrami. (Strojony filtr pasmowy Gm-C o częstotliwości 10.7 MHz dobroci 267 i dynamice 103 dB)

Keywords: 10.7 MHz , fully balanced, high-Q, Gm-C bandpass filter, sensitivities.
Słowa kluczowe: strojony filtr pasmowy, pasmo Gm-C .

Introduction

Bandpass filters are employed in many applications such as in a radio-frequency (RF) filter for image rejection or an intermediate-frequency (IF) filter for channel selection of a wireless receiver. Typically, FM radio receivers require an IF filter set at a center frequency (f0) of 10.7 MHz based on off-chip devices such as discrete ceramic or surface acoustic wave (SAW) components [1,2]. As off-chip filters are bulky and consume more power to drive external devices, the need for possible on-chip filters for fully viable integrated receivers has increasingly been motivated. Recently, attempts at possible on-chip filters have particularly been demonstrated for $10.7-\mathrm{MHz}$ IF filters based on, for example, switched capacitors (SC) [3-8], and Gm-C [9-13] techniques. Such techniques have, however, repeatedly suffered from low quality (Q) factors from 10 to 55 , high total noise from 226 to $707 \mu \mathrm{~V}_{\mathrm{rms}}$ and limited dynamic ranges from 58 to 68 dB .

In this paper, a $10.7-\mathrm{MHz}$ fully balanced, high -Q , wide-dynamic-range current-tunable Gm-C bandpass filter is introduced using three fully balanced devices, i.e. an adder, a low-Q-based bandpass filter and a differential amplifier. The high-Q factor is possible through a tunable bias current. The technique is demonstrated through an example at 10.7 MHz . Temperature compensation for both the centre frequency and the Q factor are summarised. Other 10.7 $\mathrm{MHz} \mathrm{Gm}-\mathrm{C}$ approaches are also compared.

The proposed high-Q wide-dynamic-range bandpass filter

Figure 1 shows the proposed system realization of a high- Q bandpass filter where the system is relatively simple based on three fully balanced components, i.e. a two-input adder A_{D}, a low-Q-based bandpass filter $A_{L Q}(s)$ and a differential amplifier A_{G}. The transfer function of the low-Qbased bandpass filter $\mathrm{A}_{\mathrm{LQ}}(\mathrm{s})$ can be written as

$$
\begin{equation*}
A_{L Q}(s)=\frac{\left(\frac{\omega_{o}}{Q_{L Q}}\right) s}{s^{2}+\frac{\omega_{o}}{Q_{L Q}} s+\omega_{o}^{2}} \tag{1}
\end{equation*}
$$

The pass band gain of (1) is $A_{L Q}=1$ at $s=j \omega_{\circ}$ and $Q_{L Q}$ is a relatively low- Q factor of $A_{L Q}(s)$. Consequently, a closedloop gain $A_{H Q}(s)=v_{0} / v_{\text {in }}$ is given by

Fig.1. Proposed system realization of a high-Q bandpass filter

$$
\begin{equation*}
A_{H Q}(s)=\frac{A_{D} A_{L Q}(s)}{1-A_{D} A_{G} A_{L Q}(s)} \tag{2}
\end{equation*}
$$

Substituting $A_{\llcorner Q}(\mathrm{s})$ in (2) with (1) yields

$$
\begin{equation*}
A_{\mathrm{HQ}}(s)=\frac{A_{D}\left(\frac{\omega_{o}}{Q_{L Q}}\right) s}{s^{2}+\frac{\omega_{o}}{Q_{\mathrm{HQ}}} s+\omega_{o}{ }^{2}} \tag{3}
\end{equation*}
$$

where the quality factor $Q_{H Q}$ is given by

$$
\begin{equation*}
Q_{H Q}=\frac{Q_{L Q}}{1-A_{D} A_{G}} \tag{4}
\end{equation*}
$$

It can be seen from (4) that $Q_{\text {HQ }}$ may ideally approach infinite if the denominator ($1-A_{D} A_{G}$) approaches zero. In other words,

$$
\begin{equation*}
A_{G} \rightarrow \frac{1}{A_{D}} \tag{5}
\end{equation*}
$$

In practice, the denominator of (4) may be made relatively small, i.e. A_{G} is in the proximity of $1 /\left(A_{D}\right)$, resulting in a relatively high quality factor $Q_{H Q}$.

Figure 2 shows the proposed circuit realization for Fig 1 through an example of a fully balanced high-Q currenttunable $\mathrm{Gm}-\mathrm{C}$ bandpass filter (A_{HQ}). The circuit consists of three fully balanced components, i.e. a two-input adder $\left(A_{D}\right)$, a low-Q-based bandpass filter ($A_{L Q}$) and a differential amplifier $\left(\mathrm{A}_{G}\right)$, using matched npn transistors T1 to T10 and matched pnp transistors T 11 and T 12 . In this case, equation (5) suggests that the gain of the adder $A_{D} \cong 1$. Firstly, the adder A_{D} is a modified version of an existing adder [14] and consists of a differential pair (T1, T2), a
common-collector pair (T3, T4) and two current sinks I_{1}. The $1^{\text {st }}$ small-signal input voltage of A_{D} is $v_{A B}$ between the bases of T1 and T2 (or nodes A and B). The $2^{\text {nd }}$ small-signal input voltage of A_{D} is $v_{C D}$ between the bases of T3 and T4 (or nodes C and D). A small-signal output voltage of A_{D} is $v_{E F}$ between the emitters of T3 and T4 (or nodes E and F).
Secondly, the low-Q-based bandpass filter $A_{L Q}$ is a modified version of an existing low-Q bandpass filter [15] and consists of a differential pair (T5, T6), two capacitors C_{1} and $2 \mathrm{C}_{1}$, two current sinks I_{2} and four loading diode-connected transistors T 7 to T 10 . A small-signal input voltage of $\mathrm{A}_{L Q}$ is V_{EF} between the bases of T5 and T6 (or nodes E and F) and is obtained from the output v_{EF} of A_{D}. A small-signal output voltage of $A_{L Q}$ is $v_{G H}$ between the emitters of $T 7$ and $T 8$ (or nodes G and H). Thirdly, the differential amplifier A_{G} consists of a differential pair (T11, T12), two resistors R_{C} and two current sinks I_{3}. A small-signal input voltage of A_{G} is v_{GH} between the bases of T11 and T12 (or nodes G and H) and is obtained from the output $\mathrm{V}_{G H}$ of $\mathrm{A}_{\text {LQ }}$. A smallsignal output voltage of A_{G} is $v_{C D}$ between the emitters of T11 and T12 (or nodes C and D). Finally, the transfer function of the high- Q bandpass filter is $A_{H Q}=v_{O} / v_{\text {in }}$ where $v_{\text {in }}=v_{A B}$ and $v_{O}=v_{G H}$. It can be seen from Fig. 2 that the circuit is fully balanced.

Parameters $r_{e 1}, r_{e 2}, \ldots, r_{e 11}$ and $r_{e 12}$ are the small-signal emitter resistance of transistors T1, T2, ..., T11 and T12, respectively, where ($r_{\mathrm{e} 1}=r_{\mathrm{e} 2}$) $=\mathrm{V}_{\mathrm{T}} / l_{1},\left(r_{e 3}=r_{e 4}\right) \cong \mathrm{V}_{\mathrm{T}} /\left(\alpha \mathrm{l}_{1}\right) \cong$ $r_{\mathrm{e} 1} / \alpha,\left(r_{e 5}=r_{e 6}\right)=V_{T} / l_{2},\left(r_{e 7}=r_{e 8}=r_{e 9}=r_{e 10}\right) \cong V_{T} /\left(\alpha l_{2}\right) \cong$ $r_{e 5} / \alpha, \quad\left(r_{e 11}=r_{e 12}\right)=V_{T} / l_{3}$ for $\alpha=\beta /(\beta+1)$ and β is the common-emitter current gain of a BJT. The usual thermal voltage V_{T} is approximately 25 mV associated with an pn junction at room temperature.

Firstly, the two-input adder A_{D} is considered. The output $v_{E F}$ of A_{D} is obtained through superposition, i.e. $\mathrm{V}_{E F}=\mathrm{v}_{\mathrm{O} 1^{+}}$ V_{O}. The voltage $\mathrm{v}_{\mathrm{O} 1}$ is the output v_{EF} of A_{D} when the $1^{\text {st }}$ input $v_{A B}$ of A_{D} is activated, i.e. $v_{A B}=v_{\text {in }}$, but the $2^{\text {nd }}$-input $v_{C D}$ of A_{D} is temporary deactivated or separately connected to an ac ground, i.e. $\mathrm{v}_{\mathrm{CD}}=0$. In contrast, the voltage $\mathrm{v}_{\mathrm{O} 2}$ is the output $v_{E F}$ of A_{D} when the $2^{\text {nd }}$-input $v_{C D}$ of A_{D} is activated, i.e. $v_{C D}=v_{O}$, but the $1^{\text {st }}$-input $v_{A B}$ of A_{D} is temporary deactivated or connected to an ac ground, i.e. $v_{A B}=v_{\text {in }}=0$. On the one hand, $v_{O 1}$ can be found at $v_{C D}=0$. Therefore, $v_{i n}$ of A_{D} enables a small-signal emitter current $i_{e 1}$ $=v_{\text {in }} /\left(2 r_{\text {e1 }}\right)$ passing through the emitters of T1 and T2. The resulting small-signal collector current of T1 and T2 is $\mathrm{i}_{\mathrm{c} 1}=\alpha \mathrm{i}_{\mathrm{e} 1}$. Most of $\mathrm{i}_{\mathrm{c} 1}$ passes through a loading impedance Z_{1} $=2 r_{e 3}$ formed by $T 3$ and $T 4$. As $v_{01} \cong i_{c 1} Z_{1}$, therefore $v_{01} / v_{\text {in }}$ $\cong 1$. Consequently, $v_{01} \cong v_{\text {in }}$. On the other hand, v_{02} can be found at $\mathrm{v}_{\text {in }}=0$. Therefore, the gain of the common-collector pair (T3, T4) is $\mathrm{v}_{\mathrm{O} 2} / \mathrm{v}_{\mathrm{CD}} \cong 1$, or $\mathrm{v}_{\mathrm{O} 2} \cong \mathrm{v}_{\mathrm{CD}}$. Consequently, v_{EF} $=v_{O 1}+v_{O 2}$, i.e. the gain of the adder $A_{D} \cong 1$. As $v_{\text {in }}=v_{O 1}$ and $\mathrm{v}_{\mathrm{CD}}=\mathrm{v}_{\mathrm{O} 2}$, therefore
(6)

$$
v_{E F} \cong v_{i n}+v_{C D}
$$

Secondly, the low-Q-based bandpass filter $A_{L Q}$ is considered. The input V_{EF} of A_{LQ} enables a small-signal emitter current $\mathrm{i}_{\mathrm{e} 2}=\mathrm{v}_{\mathrm{EF}}\left(2 \mathrm{~s} \mathrm{C}_{1}\right) /\left(1+\mathrm{s} \tau_{1}\right)$ passing through the emitters of T 5 and T 6 , where $\tau_{1}=4 \mathrm{r}_{\mathrm{e} 5} \mathrm{C}_{1}$. The resulting small-signal collector current of T5 and T6 is $\mathrm{i}_{\mathrm{c} 2}=\alpha \mathrm{i}_{\mathrm{e} 2}$. Most of $\mathrm{i}_{\mathrm{c} 2}$ passes through a loading impedance $Z_{2}=4 \mathrm{r}_{\mathrm{e}} /\left(1+\mathrm{s} \tau_{2}\right)$ formed by T7 to T 10 where $\tau_{2}=4 \mathrm{re}_{\mathrm{e} 7} \mathrm{C}_{1}$ and therefore τ_{2} $\cong \tau_{1} / \alpha$. The resulting output of $A_{L Q}$ is $v_{G H} \cong i_{c 2} Z_{2}$, therefore $A_{L Q}=v_{G H} / v_{E F}=v_{O} / v_{E F}$ represents a low-Q-based bandpass filter $A_{\llcorner Q}$ of the form

Fig.2. Proposed circuit realization of a high- Q bandpass filter

$$
\begin{equation*}
\mathrm{A}_{\mathrm{LQ}}=\frac{v_{O}}{v_{E F}}=\frac{2 s \alpha / \tau_{1}}{s^{2}+(1+\alpha) \frac{s}{\tau_{1}}+\frac{\alpha}{\tau_{1}{ }^{2}}} \tag{7}
\end{equation*}
$$

The quality factor of (7) is $Q_{\mathrm{LQ}}=\left(\alpha^{1 / 2}\right) /(1+\alpha) \cong 0.5$ which is a relatively low value. The center frequency of (7) is $\omega_{L Q}=\left(\alpha^{1 / 2}\right) / \tau_{1}$. At $s=j \omega_{L Q}$, the passband gain of (7) is $A_{L Q}$ $=2 \alpha /(1+\alpha) \cong 1$.

Thirdly, the differential amplifier A_{G} is considered. The input v_{GH} of A_{G} enables a small-signal emitter current $\mathrm{i}_{\mathrm{e} 3}=$ $\mathrm{v}_{\mathrm{GH}} /\left(2 \mathrm{r}_{\mathrm{e} 11}\right)$ passing through the emitters of (T11, T12). The resulting small-signal collector current of (T11, T12) is $\mathrm{i}_{\mathrm{c} 3}=$ $\alpha \mathrm{i}_{\text {e3 }}$. Most of $\mathrm{i}_{\mathrm{c} 3}$ passes through a loading resistance $Z_{3}=$ $2 R_{C}$. The resulting output of A_{G} is $v_{C D} \cong i_{C 3} Z_{3}$, and $v_{G H}=v_{O}$ therefore

$$
\begin{equation*}
A_{G}=\frac{v_{C D}}{v_{O}}=\frac{\alpha R_{C}}{r_{e 11}} \tag{8}
\end{equation*}
$$

Finally, the high-Q bandpass filter $A_{H Q}$ can be considered by substituting v_{EF} in (7) with (6) and substituting $v_{C D}$ in (7) with (8), therefore $A_{H Q}=v_{O} / v_{\text {in }} \cong A_{L Q} /\left(1-A_{G}\right.$ $A_{L Q}$), i.e.

$$
\begin{equation*}
\mathrm{A}_{\mathrm{HQ}}=\frac{v_{o}}{v_{i n}}=\frac{2 \alpha \mathrm{~s} / \tau_{1}}{s^{2}+\left(1+\alpha-2 \alpha A_{G}\right) \frac{s}{\tau_{1}}+\frac{\alpha}{\tau_{1}^{2}}} \tag{9}
\end{equation*}
$$

The center frequency of (9) is $\omega_{\mathrm{HQ}}=\left(\alpha^{1 / 2}\right) / \tau_{1}=g_{m 5} /\left(\alpha^{1 / 2} 4 \mathrm{C}_{1}\right)$ where the transconductance $g_{m 5}=\alpha / r_{e 5}$. The center frequency ω_{HQ} is current tunable by I_{2} of the form

$$
\begin{equation*}
\omega_{\mathrm{HQ}}=\frac{\mathrm{I}_{2}}{4 \mathrm{C}_{1} \mathrm{~V}_{\mathrm{T}}} \sqrt{\frac{\beta}{\beta+1}} \tag{10}
\end{equation*}
$$

The quality factor of (9) is $Q_{H Q}=\left(\alpha^{1 / 2}\right) /\left(1+\alpha-2 \alpha A_{G}\right)$. As $\alpha \cong 1$, therefore $Q_{H Q}$ is current tunable by I_{3} of the form

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{HQ}} \cong \frac{1}{2\left(1-A_{G}\right)} \cong \frac{1}{2\left(1-\frac{R_{C} I_{3}}{V_{T}}\right)} \tag{11}
\end{equation*}
$$

It may be suggested from (11) that the quality factor Q_{HQ} ideally approaches infinite at $I_{3}=V_{T} / R_{C}$. In practice, however, Q_{HQ} should be current tunable to a relatively large value through I_{3} where I_{3} is in the proximity of V_{T} / R_{c}. As an example, it can be expected from (11) that $Q_{H Q}=267$ if $\mathrm{A}_{\mathrm{G}}=0.9982, \mathrm{R}_{\mathrm{C}}=50 \Omega, \mathrm{~V}_{\mathrm{T}}=25 \mathrm{mV}$ and $\mathrm{I}_{3}=499 \mu \mathrm{~A}$. At $\mathrm{s}=$ $\mathrm{j} \omega_{\mathrm{HQ}}$, the passband gain of (9) is ideally (i.e. without loading effect and $\alpha=1) A_{\text {HQ }}=1 /\left(1-A_{G}\right) \cong 2 Q_{\text {HQ }}$ which is much greater than the passband gain of (7) where $A_{L Q}=2 \alpha /$ $(1+\alpha) \cong 1$ at $\mathrm{s}=\mathrm{j} \omega_{\llcorner } \mathrm{Q}$.

Sensitivities

Generally, a sensitivity of y to a variation of x is given by $\left.S_{x}^{y}=[\partial y / \partial \mathrm{x}][\mathrm{x} / \mathrm{y})\right]$ where y is a parameter of interest and x is a parameter of variation. Table 1 shows the sensitivity S_{x}^{y} where $(\mathrm{x}, \mathrm{y})=\left(\mathrm{C}_{1}, \omega_{\mathrm{HQ}}\right),\left(\mathrm{V}_{\mathrm{T}}, \omega_{\mathrm{HQ}}\right),\left(\mathrm{I}_{2}, \omega_{\mathrm{HQ}}\right),\left(\beta, \omega_{\mathrm{HQ}}\right)$, $\left(\mathrm{R}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{HQ}}\right)$, $\left(\mathrm{V}_{\mathrm{T}}, \mathrm{Q}_{\mathrm{HQ}}\right)$ or ($\left.\mathrm{I}_{3}, \mathrm{Q}_{\mathrm{HQ}}\right)$. It can be seen from Table 1 that the sensitivity of $\omega_{H Q}$ to the variations of C_{1}, V_{T}, or I_{2} are desirably independent of parameters. In addition, the sensitivity of ω_{HQ} to the variation of β is inverse proportional to β, and is a particularly low value ($\ll 1$) when β is large. Therefore, the sensitivity of ω_{HQ} is between -1 and 1 . For high-Q realizations ($I_{3} \cong V_{T} / R_{C}$), the sensitivities of $Q_{\text {HQ }}$ to the variations of $\mathrm{R}_{\mathrm{C}}, \mathrm{V}_{\mathrm{T}}$, or I_{3} are in the same order as those given in the literature $[16,17]$.

Table 1. Sensitivities

$S_{C_{1}, V_{T}}^{\omega_{\mathrm{H}}}$	$S_{I_{2}}^{\omega_{\mathrm{HQ}}}$	$S_{\beta}^{\omega_{\mathrm{HQ}}}$	$S_{R_{\mathrm{C}}}^{Q_{\mathrm{HQ}}}$	$S_{V_{T}, I_{3}}^{Q_{\mathrm{H}}}$
-1.0	1.0	$1 /[2(\beta+1)]$	$-2 \mathrm{Q}_{\mathrm{HQ}}$	$2 \mathrm{Q}_{\mathrm{HQ}}$

Dynamic ranges

Dynamic ranges (DRs) of either a specific biquad or an optimized high-Q biquad in a general way have been presented [18]. An expression for the dynamic range of a second-order Gm-C biquad in a general way is given by [18]:

$$
\begin{equation*}
D R=\frac{v_{\max }^{2}}{\overline{v_{\text {noise }}^{2}}}=\frac{v_{\max }^{2}}{k T \xi Q\left(\frac{1}{C_{a}}+\frac{1}{C_{b}}\right)} \tag{12}
\end{equation*}
$$

where $v_{\text {max }}$ is the maximal signal level (at the input or output of a system), $\overline{v_{\text {noise }}^{2}}$ is the mean squared noise voltage at the same point, C_{a} and C_{b} are two capacitors in the filter, k is the Boltzmann's constant, T is the absolute temperature, ξ is the noise factor of the transconductor (Gm) and Q is the quality factor. The dynamic range of the proposed technique can be improved by not only increasing $v_{\text {max }}^{2}$, but also reducing $\overline{v_{\text {noise }}^{2}}$ of (12) as follows. n the one hand, it is known that, the maximal signal level $\mathrm{v}_{\max }$ of a fully balance circuit is typically twice the maximal signal level v_{M} of a single-ended circuit [18], i.e. $v_{\max } \cong 2 \mathrm{v}_{\mathrm{M}}$. In other words, the magnitude $\mathrm{v}_{\text {max }}$ of (12) may be double through the use of a fully balanced circuit. On the other hand, the mean squared noise voltage can be reduced through the use of a shunt positive feedback configuration providing enhanced
current gain and thereby improving the overall noise [19]. Table 2 summarizes values of $\mathrm{C}_{\mathrm{a}}, \mathrm{C}_{\mathrm{b}}$, and dynamic ranges (DRs) of the proposed $\mathrm{Gm}-\mathrm{C}$ techniques and other existing Gm-C approaches [18, 20].

It can be seen from Table 2 that if $\mathrm{v}_{\mathrm{M} 1}=\mathrm{v}_{\mathrm{M} 2}=\mathrm{v}_{\mathrm{M} 3}$ and $(K T \xi Q)_{1}=(K T \xi Q)_{2}=(K T \xi Q)_{3}$, then $\mathrm{DR}_{1}>\mathrm{DR}_{2}>\mathrm{DR}_{3}$. The proposed $\mathrm{Gm}-\mathrm{C}$ fully-balanced technique can therefore enable a higher dynamic range DR_{1}, especially when $\overline{v_{\text {noise }}^{2}}$ is also additionally reduced. In particular, as the quality factor Q in (11) becomes $Q_{H Q}$ which is no longer a function of variables such as a center frequency, the dynamic range DR_{1} is therefore, unlike existing approaches [18, 20], no longer strongly affected by those variables previously associated in the Q factor. As an example, it can be expected from Table 2 that $\mathrm{DR}_{1}=105.72 \mathrm{~dB}$ if $\mathrm{v}_{\text {max }}=2$ $\mathrm{v}_{\mathrm{M} 1}=288 \mathrm{mV}$ (i.e. -5 dBm through a $50-\Omega$ load), $\mathrm{v}_{\mathrm{M} 1}=144$ $\mathrm{mV}, \mathrm{kT} \xi=8.33 \times 10^{-25}[20], \mathrm{Q}=267$ and $\mathrm{C}=150 \mathrm{pF}$.

Table 2. Dynamic ranges
Table 2. Dynamic ranges

Refs	Capacitors	$v_{\max }$	$D R=\frac{v_{\max }^{2}}{(k T \xi Q)\left(\frac{1}{C_{a}}+\frac{1}{C_{b}}\right)}$ This paper (fully balanced) [20] (single ended) $\mathrm{C}_{\mathrm{a}}=\mathrm{C}$ $\mathrm{C}_{\mathrm{b}}=2 \mathrm{C}$
$\mathrm{C}_{\mathrm{a}}=\mathrm{C}$ $\mathrm{C}_{\mathrm{b}}=2 \mathrm{C}$	$2 \mathrm{v}_{\mathrm{M} 1}$	$D R_{1}=2.67 \frac{v_{M 1}^{2} C}{(k T \xi Q)_{1}}$	
$[18]$ (single ended)	$\mathrm{C}_{\mathrm{a}}=\mathrm{C}$ $\mathrm{C}_{\mathrm{b}}=2 \mathrm{C}$	$D R_{2}=0.50 \frac{v_{M 2}^{2} C}{(k T \xi Q)_{2}}$	

Experimental Results

As a simple example, all transistors in Fig. 2 are modeled by a simple transistor 2N2222 and 2N2907 where the average transition frequency (f_{T}) is 120 MHz and β is approximately 120 [21]. All current sinks are LM334 [22]. The bias current $\mathrm{I}_{1}=\mathrm{I}_{2}=1.2 \mathrm{~mA}, \mathrm{I}_{3}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{C}}=50 \Omega$ and $\mathrm{C}_{1}=150 \mathrm{pF}$. Figure 3 illustrates the measured frequency response of Fig. 2 at the center frequencies $f_{0}=\omega_{\text {HQ }} /(2 \pi)=$ 10.7 MHz. It can be seen from Fig. 3 that the bandwidth (BW) is $2 \times 20=40 \mathrm{kHz}$ and therefore the measured quality factor $Q_{\text {HQ }}\left(=f_{0} / B W\right)$ is relatively high at approximately 267.

Fig.3. A measured frequency response at the centre frequency $\mathrm{f}_{0}=$ $\omega_{\mathrm{HO}} /(2 \pi)=10.7 \mathrm{MHz}$ and $\mathrm{Q}_{\mathrm{HQ}}=267$.

Figure 4 shows plots of the center frequencies $f_{0}=$ $\omega_{\mathrm{HQ}} /(2 \pi)$ and the corresponding quality factor Q_{HQ} of Fig. 2 versus the bias current I_{2} for three cases, i.e. the analysis, the SPICE simulations, and the experimental results. It can be seen from Fig. 4 that f_{0} is current tunable over 3 orders of magnitude. As expected, $Q_{\text {HQ }}$ essentially remains almost
constant at approximately 267 and is, unlike existing approaches, independent of variables such as a center frequency. When $I_{2}>1 \mathrm{~mA}, \mathrm{f}_{0}$ drops with further increase of the bias current due to effects of parasitic capacitances at higher frequencies. Although the upper value of I_{2} can be expected to be higher than 10 mA , the upper limit of the circuit prototypes has been set to 5 mA , for save operation of the current sources.

Fig.4. Plots of the center frequency $f_{0}=\omega_{H} /(2 \pi)$ and the quality factor $Q_{\text {HQ }}$ versus the bias current I_{2}.

Low noise performance

Figure 5 shows the measured output noise spectrum shaped by the transfer function of the filter, where the power noise density $\mathrm{P}_{\mathrm{N} 1}$ is relatively low at $-153.6 \mathrm{dBm} / \mathrm{Hz}$ and the resolution bandwidth (RBW) is at 200 kHz . Table 3 summarizes resulting noise parameters in terms of (1) the resolution bandwidth, (2) the noise density and (3) the total noise. Table 3 concludes that the output noise density $\mathrm{V}_{\mathrm{N} 1}=$ $0.0046 \mu \mathrm{~V}_{\text {rms }} / \sqrt{ } \mathrm{Hz}$, the total output noise $\mathrm{V}_{\mathrm{N} 3}=2.0893 \mu \mathrm{~V}_{\text {rms }}$ and the total noise power $P^{\mathrm{N} 3}=-100.59 \mathrm{dBm}$.

Fig.5. Measured output noise spectrum.
Table 3. Summaries of related noise parameters obtained from Figure. 5

Noise Parameters				Values	Units
1	Resolution bandwidth (RBW)			200	kHz
2		$\mathrm{P}_{\mathrm{N} 1}$	$10 \log \left(\mathrm{P}_{\mathrm{N} 2} / 1 \mathrm{~mW}\right)$	-153.6	$\mathrm{dBm} / \mathrm{Hz}$
		$\mathrm{P}_{\mathrm{N} 1}$	-	4.3652×10^{-19}	W/Hz
		v_{N}^{2}	$\mathrm{P}_{\mathrm{N} 2} \times(50 \Omega)$	2.1826×10^{-17}	$\mathrm{V}^{2} / \mathrm{Hz}$
		$V_{N 1}$	$\sqrt{V_{N}^{2}}$	4.6718×10^{-9}	$\mathrm{V}_{\text {rms }} / \sqrt{ } \mathrm{H} \mathrm{Hz}$

3	$\begin{aligned} & \mathbb{0} \\ & .0 \\ & \underline{O} \\ & \underline{0} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\mathrm{V}_{\mathrm{N} 2}$	$\mathrm{V}_{\mathrm{N}}^{2} \times \mathrm{RBW}$	4.3652×10^{-12}	V^{2}
		$\mathrm{V}_{\mathrm{N} 3}$	$\checkmark \mathrm{V}_{\mathrm{N} 2}$	2.0893×10^{-6}	$\mathrm{V}_{\text {rms }}$
		$\mathrm{P}_{\mathrm{N} 3}$	$10 \log \frac{\mathrm{~V}_{\mathrm{N} 3}^{2}}{(50 \Omega)(1 \mathrm{~mW})}$	-100.59	dBm

Wide dynamic range

The circuit is excited with two sinusoids at frequencies f_{1} $=f_{0}-7.5 \mathrm{kHz}=10.6925 \mathrm{MHz}$, and $\mathrm{f}_{2}=\mathrm{f}_{0}+7.5 \mathrm{kHz}=$ 10.7075 MHz . The $3^{\text {rd }}$-order intermodulation $\left(\mathrm{IM}_{3}\right)$ products $\left|2 \mathrm{f}_{1}-\mathrm{f}_{2}\right|$ and $\left|2 \mathrm{f}_{2}-\mathrm{f}_{1}\right|$ are 10.6775 and 10.7225 MHz , respectively.

Fig.6. Measured output noise spectrum

Fig.7. Measured output levels of the fundamental at f_{1} and the $I M_{3}$ at $\left|2 f_{1}-f_{2}\right|$ versus input levels.

Figure 6 shows the measured output spectrums at $Q_{H Q}$ $=267$ using the two-frequency excitation of -20 dBm at f_{1} and f_{2}. It can be seen that the $I M_{3}$ products are approximately 40 dB down from the fundamentals and correspond to 1% (or $1 \% \mathrm{IM}_{3}$). Through a $50-\Omega$ load of the spectrum analyzer without the output buffer, Figure 7 depicts the measured output levels (dBm) of the fundamental at f_{1} and the $I M_{3}$ at $\left|2 f_{1}-f_{2}\right|$ versus the input levels (dBm). It can be seen from Fig. 7 that the noise power $P_{\mathrm{N} 3}=-100.59 \mathrm{dBm}$. At the input level of -45 dBm , the output level of f_{1} is -18 dBm whilst the output leve of the IM_{3} is adjacent to $\mathrm{P}_{\mathrm{N} 3}$ (or intermodulation free). Therefore the $3^{\text {rd }}$-order intermodulation-free dynamic range $\left(\mathrm{IMFDR}_{3}\right)$ $=(-18 \mathrm{dBm})-(-100.59 \mathrm{dBm})=82.59 \mathrm{~dB}$. In addition, at the input level of -20 dBm , the output level of f_{1} is 2.2 dBm , whilst the output level of the $I M_{3}$ is 40 dB down from f_{1} (or $1 \% \mathrm{IM}_{3}$). Therefore, the wide dynamic range (at $1 \% \mathrm{IM}_{3}$) $=$ $(2.2 \mathrm{dBm})-(-100.59 \mathrm{dBm})=102.79 \mathrm{~dB} \approx 103 \mathrm{~dB}$ which is
consistent with the expected value $\mathrm{DR}_{1}=105.71 \mathrm{~dB}$ predicted in section of dynamic range.

Effects of Temperature on the Center Frequency

For the high-Q bandpass filter $A_{H Q}$, Figure 8 shows two cases of the measured variations of the normalized center frequency $\mathrm{f}_{0} /(10.7 \mathrm{MHz})$ versus the ambient temperature (Celsius). The first case is an "uncompensated" case where the effects of temperature on the center frequency f_{0} have not been compensated. The second case is a "compensated" case where the effects of temperature on f_{0} have been compensated.

The uncompensated case can be demonstrated by taking Fig. 2 into an oven except that the connected two current sinks I_{2} are located outside the oven (i.e. the two current sinks I_{2} will be independent of the ambient temperature in the oven). It can be seen from Fig. 8 that the normalized frequency of the "uncompensated" case decreases inversely with the ambient temperature (in the oven) as can be expected from (10) where effects of temperature caused by the thermal dependent voltage V_{T} is in the denominator of (10).

Fig. 8. Normalized centre frequencies versus ambient temperature for the uncompensated and compensated cases.

The compensated case can be demonstrated by taking Fig. 2 into an oven including the connected two current sinks I_{2} (i.e. the two current sinks I_{2} will also be affected by the ambient temperature in the oven). It can be seen from Fig. 8 that the normalized frequency of the "compensated" case remains relatively constant, as can be expected from (10) where effects of temperature caused by V_{T} in the denominator of (10) can be compensated by the relatively similar effects caused by V_{T} of I_{2} in the numerator of (10), i.e. $I_{2} \propto V_{B E}$ where $V_{B E}=V_{T} \ln \left(I_{C} I_{s}\right), I_{c}$ and I_{s} are the collector and saturation currents of a BJT in LM334.

In the compensated case, the temperature coefficients of the normalized center frequencies decrease drastically. The measured temperature coefficients for ambient temperature ranging from $\mathrm{T}_{1}=30^{\circ} \mathrm{C}$ to $\mathrm{T}_{2}=75^{\circ} \mathrm{C}$ are approximately $-29 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, i.e. $\cong\left[f\left(\mathrm{~T}_{2}\right)-\mathrm{f}\left(\mathrm{T}_{1}\right)\right] \times 10^{6} /$ $\left[\mathrm{f}\left(\mathrm{T}_{1}\right) \times\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)\right]=(0.9987-1) \times 10^{6} /[(1)(75-30)]$. The measurements have been obtained by putting the two frequency-determining capacitors outside the oven, and the measured temperature coefficients are therefore due to the intrinsic circuit parameters only.

Effects of Temperature on the Quality Factor

Effects of temperature on the quality factor have never clearly been reported. In a similar manner to Section D, Fig. 9 shows two cases of the measured variations of the quality
factor $Q_{H Q}$ versus the ambient temperature (Celsius), i.e. the uncompensated and the compensated cases. It can be seen from Fig. 9 that Q HQ in the "uncompensated" case increases versus the ambient temperature as can be expected from (11) where effects of temperature caused by the thermal dependent voltage V_{T} is in the denominator of (11).

Fig. 9. The quality factor $Q_{H Q}$ versus ambient temperature for the uncompensated and compensated cases

Unlike the two cases in Fig. 8 where the temperature dependent capacitors are located outside the oven, both cases in Fig. 9 have been obtained by including the temperature dependent resistors $2 \mathrm{R}_{\mathrm{c}}$ inside the oven. It may be observed from both cases in Fig. 9 that the uncompensated effects of the ambient temperature due to the resistor R_{c} in the numerator of the ratio $R_{c} I_{3} / V_{T}$ in (11) remain evident.

Possible On-Chip High-Q Wide-Dynamic-Range Bandpass Filter

Preferable requirements for an on-chip integrated bandpass filter include low power consumption, low silicon areas of capacitors, high dynamic ranges and high center frequencies whilst maintaining high quality factors. On the one hand, equation (10) suggests that not only the power consumption (P_{c}) due to I_{2} but also the silicon areas due to C_{1}, can be simultaneously reduced for the same ratio of (10). On the other hand, equation (12) suggests that the smaller the values of the capacitance in the circuit, the smaller the value of the dynamic range (DR). As a result, higher dynamic ranges on chip require higher power consumptions and more silicon areas of capacitors. As an example at the center frequency $\mathrm{f}_{0}=10.7 \mathrm{MHz}$ whilst maintaining the high quality factor $Q_{H Q}=267$, Fig. 10 predicts preliminary interpolation of a power consumption P_{C} and a corresponding dynamic range (DR at $1 \% \mathrm{IM}_{3}$) versus the capacitance C_{1}. It can be seen from Fig. 10 that a higher dynamic range $D R=103 \mathrm{~dB}$ requires a higher power consumption $\mathrm{P}_{\mathrm{C}}=90 \mathrm{~mW}$ at $\mathrm{C}_{1}=150 \mathrm{pF}$, whilst a lower $\mathrm{DR}=81 \mathrm{~dB}$ requires a lower $\mathrm{P}_{\mathrm{C}}=0.6 \mathrm{~mW}$ at $\mathrm{C}_{1}=1$ pF.

High-frequency performance of the circuit will be limited by the transition frequency (f_{T}) of the transistor. Equation (10) suggests that a higher, more useful, center frequency can be expected using a smaller value of capacitor C_{1} (e.g. using stray capacitances), a higher value of I_{2} and a higher f_{T} (e.g. in the region of several GHz) of better transistors. As a particular example, all transistors in Fig. 2 are modeled by a better transistor BFR90A with higher f_{T} at 5 GHz [23], $\beta=$ 120 and the bias currents $\mathrm{I}_{1}=\mathrm{I}_{2}=1 \mathrm{~mA}$. Figure 11 shows high-frequency performance of Fig. 2 through the analysis
and the SPICE simulations in terms of the center frequency and the quality factor $Q_{\text {HQ. }}$. In this particular example, $Q_{\text {HQ }}$ is maintained relatively high and the upper frequency is limited at approximately 500 MHz at $\mathrm{C}_{1}=1 \mathrm{pF}$.

Fig. 10. Preliminary interpolation of the power consumption $\left(\mathrm{P}_{\mathrm{c}}\right)$ and the dynamic range ($D R$ at $1 \% \mathrm{IM}_{3}$) versus C_{1} at $\mathrm{f}_{0}=10.7 \mathrm{MHz}$ and $\mathrm{Q}_{\mathrm{HQ}}=267$.

Fig. 11. An example of the center frequencies f_{0} and the quality factor $Q_{H Q}$ versus capacitance C_{1} with fixed bias currents $I_{1}=I_{2}=1$ mA .

Conclusion

A fully-balanced high-Q, wide-dynamic-range currenttunable $\mathrm{Gm}-\mathrm{C}$ bandpass filter has been proposed based on three simple components, i.e. the adder, low-Q-based bandpass filter and differential amplifier. The high-Q factor is possible through a tunable bias current. An example has been demonstrated at 10.7 MHz for a high-Q factor of 267 , the low noise power of -100.59 dBm , the wide dynamic range of 103 dB at $1 \% \quad \mathrm{IM}_{3}$ and the $3^{\text {rd }}$-order intermodulation-free dynamic range (IMFDR 3) of 82.59 dB . The center frequency has been current tunable over 3 orders of magnitude. The proposed technique has offered a potential alternative to a $10.7-\mathrm{MHz}$ high-Q wide-dynamicrange bandpass filter.

REFERENCES

[1] P. J., Quinn., "High-Accuracy Charge-Redistribution SC Video Bandpass Filter in Standard CMOS," IEEE Journal of SolidState Circuits, 33(1998), no.7, 963-975.
[2] A. E. P.Engelen, J. Plassche, E. Stikvoort, and A. G. Venes, "A Sixth-Order Continuous-Time Bandpass Sigma-Delta Modulator for Digital Radio IF," IEEE Journal of Solid-State Circuits, 34(1999), 1753-1764.
[3] D. Hernandez-Garduno and J. Silva-Martinez, "ContinuousTime Common-Mode Feedback for High-Speed Switched-

Capacitor Networks," IEEE J. of Solid-State Circuit, 40(2005), 1610-1617.
[4] J. Silva-Martinez, J. Adut and M. Rocha-Perez, "A 58dB SNR 6th Order Broadband 10.7 MHz SC Ladder Filter," IEEE Custom Integrated Circuits Conference, (2003) 13-16.
[5] S. A. Hammouda, "A 1.5 V Opamp Design its High Gain Wide Bandwidth and its Application in a High Q Bandpass Filter Operating at 10.7 MHz ," IEEE Trans. on Circuits. and Systems., 38(2002), 185-188.
[6] P. J. Quinn, K. van Hartingsveldt and A. H. M. van Roermund., " A 10.7-MHz CMOS SC Radio IF Filter Using Orthogonal Hardware Modulation," IEEE Journal of Solid-State Circuits., 35(2000), no.12, 1865-1876.
[7] A. Nagsri and G. Nicollini, "A 3 V 10 MHz Pseudo-Differential SC Bandpass Filter Using Gain Enhancement Replica Amplifier," IEEE Journal of Solid-State Circuits, 33(1998). 626-630.
[8] A. Nagari, A. Baschirotto and R. Castello, "A 10.7 MHz BiCMOS High-Q Double-Sampled SC Bandpass Filter," IEEE Journal of Solid-State Circuits, 32(1997), 1491-1498.
[9] A. Tajalli and M. Atarodi, "Design Considerations for a $1.5-\mathrm{V}$, $10.7-\mathrm{MHz}$ Bandpass Gm-C Filter in a $0.6-\mathrm{um}$ Standard CMOS Technology," IEEE ISCAS'03, 1(2003), I-521-l-52.
[10] W. Chung-Yu and C. Chung-yun., "The Design of a CMOS IF Bandpass Amplifier with Low Sensitivity to Process and Temperature Variations," IEEE ISCAS 2001, 1(2001), 121124.
[11] F. Munoz, A. Torralba, R.G. Carvajal, J. Tombs, and J. Ramirez-Angulo, "Floating-Gate-Based Tunable CMOS LowVoltage Linear Transconductor and Its Applications to HF Gm-C Filter Design," IEEE Trans. on Circuits and Systems-I, 48(2001). no.1, 106-110.
[12] J. Stevenson and S. Edgar, "An Accurate Quality Factor Tuning Scheme for IF and High-Q continuous-time filters," IEEE Journal of Solid-State Circuits, 33(1998), no.12, 19701978.
[13] M. Steyaert and J. Silva-Martinnez, "A 10.7 MHz CMOS OTA-R-C Bandpass Filter with 68dB Dynamic Range and on-chip automatic tuning," IEEE Solid-State Cirt. Conference, (1992). 66-67,
[14] B. Srisuchinwong, "Fully Balanced Current-Tunable Sinusoidal Quadrature Oscillator," International J. of Electronics. 87(2000), no. 5, 547-556.
[15] S. Pookaiyaudom, B. Srisuchinwong, and W.Kurutach, "A Current-Tunable Sinusoidal Oscillator," IEEE Trans. Instrumentation and measurement, IM-36(1987), no. 3, 725729.
[16] D. T. Comer, D. J. Comer and J. R. Gonzzalez, " Ahigh Frequency Integrable Bandpass Filter Configuration," IEEE Trans. Circuit and System II, 44(1997), no. 10, 856-861.
[17] H. Liu and A. Karsilayan, "An Accurate Automatic Tuning Scheme for High-Q Continuous-Time Bandpass Filters Based on Amplitude Comparison," IEEE Trans. Circuit and System II: Analog and Digital Signal Processing, 50 (2003), no. 8, 415423.
[18] G. Groenewold, "The Design of High Dynamic Range Continuous-Time Integratable Bandpass Filters," IEEE Trans. Circuit and System II: Analog and Digital Signal Processing, 38(1991), no. 8, 838-852.
[19] A. Liscidini, M.Brandolini, D. Sanzogni,and R. Castello, A $0.13 \mu \mathrm{~m}$ CMOS front-end, for DCS1800/UMTS/802.11b-g with multiband positive feedback low-noise amplifier," IEEE Journal. of Solid-State Circuits, 41 (2006), no. 4, 981-989.
[20] W. B. Kuhn, D. Nobbe, D. Kelly and A. W. Orsborn, "Dynamic Range Performance of On-Chip RF Bandpass Filters," IEEE Trans. Circuit and System II: Analog and Digital Signal Processing, 50(2003), no. 10, 685-694.
[21] Small-Signal Transistor Data, Philips Inc. 2001.
[22] National Semiconductor Data. 2000.
[23] RF Transistor Data, Vishay Semiconductor GmbH. 1999.
The correspondence address is:
Worawat Sa-ngiamvibool, Faculty of Engineering, Mahasarakham University, Tambon Khamriang, Kantharawichai District, Maha Sarakham 44150 Thailand. e-mail: wor_nui@yahoo.com
e-mail: wor_nui@yahoo.com

