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Abstract. The problem of zeroing of the state variables in descriptor electrical circuits by state-feedbacks is formulated and solved. Necessary and 
sufficient conditions for the existence of gain matrices such that the state variables of closed-loop systems are zero for time greater zero are 
established. The procedure of choice of the gain matrices is demonstrated on simple descriptor electrical circuits with regular pencils.  
 
Streszczenie. Sformułowano i rozwiązano nowy problem zerowania zmiennych stanu deskryptorowych (singularnych) liniowych obwodów 
elektrycznych poprzez dobór odpowiednich sprzężeń zwrotnych. Podano warunki konieczne i wystarczające istnienia takich sprzężeń zwrotnych 
zapewniających zerowanie zmiennych stanu dla chwil czasowych większych od zera. Zaproponowano procedurę doboru sprzężeń zwrotnych, którą 
zilustrowano prostymi przykładami odwodów elektrycznych. (Zerowanie zmiennych stanu deskryptorowych obwodów elektrycznych poprzez 
sprzężenia zwrotne). 
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Introduction 
 Descriptor linear systems with regular pencils have been 
considered in many papers and books [1-5, 7-9, 18-20]. The 
eigenvalues and invariants assignment by state and output 
feedbacks have been investigated in [6-7, 18] and the 
realization problem for singular positive continuous-time 
systems with delays in [11]. The computation of Kronecker's 
canonical form of a singular pencil has been analyzed in 
[20]. Luenberger in [19] has proposed the shuffle algorithm 
to analysis of the singular linear systems. A method for the 
checking of positivity of descriptor linear systems by the use 
of the shuffle algorithm has been proposed in [13]. The 
positivity and reachability of fractional electrical circuits 
have been addressed in [10, 14] and descriptor(singular) 
fractional linear systems and electrical circuits in [17]. 
Modified version of the shuffle algorithm has been proposed 
for the reduction of the singular fractional system into 
dynamic and static parts in [15]. The descriptor fractional 
discrete-time and continuous-time linear systems have 
been investigated in [16]. 
 In this paper the problem of zeroing of the state 
variables in descriptor electrical circuits by state-feedbacks 
will be formulated and solved. The paper is organized as 
follows. In section 2 the descriptor linear electrical circuits 
are presented. The zeroing problem is formulated and 
solved in section 3 where the necessary and sufficient 
conditions for the existence of solution to the problem are 
established. Concluding remarks are given in section 4. 

The following notation will be used:  - the set of real 

numbers, n m - the set of n m  real matrices, 
nI - the 

n n  identity matrix.  
 
Descriptor linear electrical circuits  
 Consider the descriptor (singular) linear continuous-time 
system 

(1) Ex Ax Bu   

where ( ) nx x t  , ( ) mu u t   are the state and input 

vectors, respectively and , n nE A  , n mB  . 

It is assumed that det 0E  , rankB m  and the pencil is 
regular, i.e. 

(2)  det 0Es A   for some s C   

(the field of complex numbers). 

Example 1. Consider electrical circuit shown on Fig. 1 with 
given resistance R, capacitances C1, C2, C3 and source 
voltages e1 and e2. 

 
 
Fig. 1. Electrical circuit of Example 1. 

Using Kirchhoff’s laws, for the electrical circuit we can write 
the equations 

(3) 

1
1 1 1 3

31 2
1 2 3

2 2 3

,

0,

.

du
e RC u u

dt
dudu du

C C C
dt dt dt

e u u

  

  

   

The equations (3) can be written in the form 

(4)

1 1 1
1

1 2 3 2 2
2

3 3

0 0 1 0 1 1 0

0 0 0 0 0 .

0 0 0 0 1 1 0 1

RC u u
ed

C C C u u
edt

u u

          
                                              

In this case we have 

(5)

1

1 2 3

0 0 1 0 1 1 0

, 0 0 0 , 0 0 .

0 0 0 0 1 1 0 1

RC

E C C C A B

      
             
             

Note that the matrix E is singular (det E = 0) but the pencil 

(6)

1

1 2 3 1 2 3 1

1 0 1

det[ ] ( 1)( )

0 1 1

RCs

Es A C s C s C s RC s C C s C s


      
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is regular. Therefore, the electrical circuit is a descriptor 
linear system with regular pencil. 
In general case we have the following theorem. 
Theorem 1. If the electrical circuit contains at least one 
mesh consisting of branches with only ideal capacitors and 
voltage sources, then its matrix E is singular. 
Proof. Note that the row of E corresponding to the mesh is a 
zero row. This follows from the fact that the equation written 
with the use of Kirchhoff’s voltage law is an algebraic one.□ 
Example 2. Consider electrical circuit shown on Fig. 2 with 
given resistances R1, R2, R3 inductances L1, L2, L3 and 
source voltages e1 and e2. 

 

Fig. 2. Electrical circuit of Example 2.2. 

Using Kirchhoff’s laws we can write the equations 

(7) 

31
1 1 1 1 3 3 3

32
2 2 2 2 3 3 3

1 2 3

,

,

0.

didi
e R i L R i L

dt dt
didi

e R i L R i L
dt dt

i i i

   

   

    

Equations (7) can be written in the form 

(8)

1 3 1 1 3 1
1

2 3 2 2 3 2
2

3 3

0 0 1 0

0 0 0 1 .
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L L i R R i
ed

L L i R R i
edt

i i

          
                                              

In this case we have 
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Note that the matrix E is singular but the pencil 

(10)

1 1 3 3
2

2 2 3 3 1 2 3 2 3

1 3 2 2 3 2 2 3 3 1 2 3 2 3

0

det[ ] 0 [ ( ) ]

1 1 1

[( ) ( ) ( ) ] ( )

Ls R L s R

Es A L s R L s R L L L L L s

L L R L L R L L R s R R R R R

 
      

 

        
 

is regular. Therefore, the electrical circuit is a descriptor 
linear system with regular pencil. 
Theorem 2. If the electrical circuit contains at least one 
node with branches with coils then its matrix E is singular. 
Proof. Note that the equation written using the current 
Kirchhoff’s current law for this node is an algebraic one and 
in the matrix E we have zero row. □ 
In general case we have the following theorem. 
Theorem 3. Every electrical circuit is a singular system if it 
contains at least one mesh consisting of branches with only 

ideal capacitances and voltage sources or at least one node 
with branches with coils. 
Proof. By Theorem 1 the matrix E of the system is singular 
if the electrical circuit contains at least one mesh consisting 
of branches with only ideal capacitors and voltage sources. 
Similarly, by Theorem 2 the matrix E is singular if the 
electrical circuit contains at least one node with branches 
with coils.□ 
 
Zeroing of the state vector 
 Consider descriptor linear circuit described by the 
equation (1) with regular pencil satisfying (2). To the 
electrical circuit the state-feedback 

(11) u Kx , m nK   (gain matrix). 

is applied and the equation of closed-loop circuit has the 
form 

(12) ( ) ( ) ( )Ex t A BK x t  . 

We are looking for a gain matrix K such that state vector 
( )x t  of the closed-loop circuit satisfies the condition 

(13) ( ) 0x t   for 0t   

for any admissible initial conditions and any values of 
resistances, inductances and capacitances. 
It will be shown that there exists a gain matrix K such that 
the condition (3.3) is satisfied if and only if 

(14)  rank ,Es A B n   for all s C . 

Remark 1. The condition (14) is satisfied if and only if the 
matrix  ,Es A B  can be reduced to the matrix  0 nI  by 

the use of elemantary column operations [9]. 
Theorem 4. There exists m nK   satisfying the condition 

(15)  det 0Es A BK         

(α - a real number independent of s) if and only if the 
condition (3.4) is met. 
Proof is given in [6]. 
The solution of the problem is based on the following 
theorem. 
Theorem 5. There exists a gain matrix m nK   such that 
(13) holds if and only if the condition (14) is satisfied. 
Proof. By Theorem 4 there exists K satisfying (15) if and 
only if the condition (14) is met. In this case, using the 
Laplace transform from (12) we obtain 

(16)   1

0( )X s Es A BK x


     , 

where 

0

( ) ( ) stX s x t e dt


 
 is the Laplace transform of x(t) and x0 

is the admissible initial condition. 
Taking into account (15) we obtain 

(17)
 
 

   0 0 0 1 0

Adj Adj
( )

det
q

q

Es A BK Es A BK
X s x x P Ps Ps x

Es A BK 
              
   



where  Adj Es A BK     denotes the adjoint matrix and 

n n
kP

  for 0,1,...,k q . 

Applying the inverse Laplace transform to (17) we obtain 

(18)  
0

0

( ) ( ) 0
q

k
k

k

x t P x t


   for 0t  , 
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where ( )t  is the Dirac impulse and   ( )k t  is k-th 

derivative.□ 
Example 3. Consider the electrical circuit shown in Fig. 3 
with given resistance R, capacitances C1, C2 and source 
voltage ( )e e t . 

 

Fig. 3. Electrical circuit of Example 3. 

Using Kirchhoff's laws for the electrical circuit we can write 
the equations 

(19) 
1 2 2

1 2

1 2

,

,

du du u
C C
dt dt R

u u e

 

 

 

which can be rewritten in the form 

(20a) 1 1

2 2

u ud
E A Be

u udt

   
    

   
, 

where 

(20b) 1 2

0 0

C C
E

 
  
 

, 1
0

1 1
A R

 
 
 
  

, 0

1
B

 
  
 

.  

The condition (14) is satisfied since 

(21)   1 2

1
0

rank , rank 2
1 1 1

sC sC
Es A B R

     
 
 

  

for all s C . 
For the gain matrix  1 2K k k  the closed-loop system 

matrix has the form 

(22)   1 2

1 2

1

1 1

sC sC
Es A BK R

k k

         
  

 

and its determinant is equal to a real number 0   

(23)       1
1 2 2 1

1
det 1 1

k
Es A BK s C k C k

R


             
 

for  

(24) 1 1k   and  1 2 1
2

1

1C C k
k

C

 
 . 

Therefore, for the state feedback matrix  1 2K k k  with 

k1 and k2 defined by (3.14) we have 
1( ) 0u t  , 

2 ( ) 0u t   for 

0t  . 
Example 4. Consider the electrical circuit shown in Fig. 3.2 
with given resistances R1, R2, inductances L1, L2 and source 
current ( )s si t i . 

 

Fig. 4. Electrical circuit of Example 4. 

Using Kirchhoff's laws for the electrical circuit we can write 
the equations 

(25) 
1 2

1 1 1 2 2 2

1 2

0,

,s

di di
R i L R i L

dt dt
i i i

   

 

 

which can be rewritten in the form 

(26a) 1 1

2 2
s

i id
E A Bi

i idt

   
    

   
, 

where 

(26b) 1 2

0 0

L L
E

 
  
 

, 1 2

1 1

R R
A

 
    

, 0

1
B

 
  
 

.  

The condition (14) is satisfied since 

(27)   1 1 2 2 0
rank , rank 2

1 1 1

R sL R sL
Es A B

   
   

 
  

for all s C . 
For the gain matrix  1 2K k k  the closed-loop system 

matrix has the form 

(28)   1 1 2 2

1 21 1

R sL R sL
Es A BK

k k

   
         

 

and its determinant is equal to a real number 0   

(29)

       1 1 2 2 2 1det 1 1Es A BK R sL k R sL k           
for k1 and k2 satisfying the equation 

(30) 
 

1 22 1 1

1 22 2 2

L LL L k

R RR R k 
    

            
. 

The solution of (30) has the form 

(31) 

 

1
1

1 2 1 2 2 11 2 1

1 22 2 2 2

1 2 2 1

1

1

L
L L R L R Lk L L

R Rk R R L

R L R L



 


                          

 

Therefore, for the state feedback  1 2K k k  with k1 and k2 

given by (31) we have 
1( ) 0i t  , 

2 ( ) 0i t   for 0t  . 

Remark 2. For the electrical circuit shown in Fig. 1 the 
condition (14) is not satisfied since 
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(32)

 
1

1 2 3

1 0 1 1 0

rank , rank 0 0 2

0 1 1 0 1

sRC

Es A B sC sC sC

 
     
  

  

for all s C . 
 
Concluding remarks 

The problem of zeroing of the state variables in 
descriptor electrical circuits by suitable choice of state 
feedbacks has been formulated and solved. It has been 
shown that there exists a gain matrix such that (13) holds if 
and only if the condition (14) is satisfied. The choice of the 
gain matrix of state feedbacks has been demonstrated in 
two examples of descriptor electrical circuits. The 
considerations can be extended to fractional descriptor 
electrical circuits [12]. 
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