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Abstract. A time-frequency signal analysis (TFSA) refers to processing of signals with a time-varying frequency content. These non-stationary 
signals are best represented by the time-frequency distributions, which show how the energy of the signal is distributed over a two-dimensional time-
frequency space. Real time processing of these non-stationary signals demands the computational performance of a few giga operations per 
second, which cannot be obtained using the single or multi core processors. The required computing power can be provided by the massively 
parallel processors. The paper presents an implementation of the Cohen’s class time-frequency representations on a massively parallel processor. 
 
Streszczenie. Łączne czasowo-częstotliwościowe reprezentacje sygnałów umożliwiają analizowanie sygnałów, których widmo częstotliwościowe 
zmienia się w czasie. Przetwarzanie, w czasie rzeczywistym, sygnałów niestacjonarnych wymaga jednak znacznej mocy obliczeniowej. W artykule 
przedstawiono efektywną implementację czasowo-częstotliwościowej reprezentacji sygnałów z zastosowaniem procesorów masowo-równoległych. 
(Realizacja czasowo-częstotliwościowej reprezentacji sygnałów z klasy Cohena z zastosowaniem procesorów masowo-równoległych).  
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Introduction 
 Conventional spectral analysis of a signal has been 
based on Fourier transform techniques. However, this tool 
is useful only for analyzing signals whose characteristics do 
not vary with time. On the other hand, most of the signals 
emitted by natural or artificial systems had different forms of 
time dependence of their spectral content. This 
nonstationarity very often carry the most important 
information about a signal. This information can be 
extracted using a time-frequency representation (TFR), 
which is intended to show how the energy of the signal is 
distributed over the two-dimensional time-frequency space. 
The TFRs have been successfully used in numerous 
practical applications [2] in the areas of wireless 
communications, radar [3,4] and sonar systems, biomedical 
signal analyses and multimedia signal processing. 
However, these applications typically require large amounts 
of computing power, which cannot be obtained using the 
single or multi core processors. The required computing 
power can be delivered by modern graphics processing 
units (GPUs) which have evolved into massively parallel 
processor systems allowing very efficient manipulation of 
large blocks of data.  
 
Time-Frequency Representations 
 One of the method for a nonstationary signal analysis is 
a decomposition of a signal into a set of blocks which can 
extract signal properties in time as well as in frequency. 
This decomposition for a signal  x t  can be written as: 

(1)      ,( ) ,x t fx t t f h t dtdf
 

 

   , 

where function  ,t fh t  plays a role of a time-frequency atom 

which possesses joint time-frequency localization 
properties. The inverse transform of (1) is given by: 

(2)      *
,, ( )x t ft f x t h t dt

 

 

   , 

and  ,x t f can be interpreted as a linear time-frequency 

representation of  x t . There is obviously a great 

arbitrariness in the choice of such a representation. For an 
example the choice of      exp 2tfh s h s t j fs   leads to 

the family of short-time Fourier transforms with a window 

 .h , and the choice of     0 0tfh s f f h f f s t   leads 

to the family of wavelet transforms.  
 The numerous TFRs decompose not of the signal itself, 
but of its energy. The energy xE  of a signal  x t can be 

equivalently expressed as: 

(3)      2 2

xE x t dt X f df
 

 

   . 

The decomposition for the energy  x t at the time can be 

written as: 

(4)    ,x xE t f dtdf
 

 

   . 

The choice of  ,x t f  can be carried out by 

various methods which results in a large number of different 
approaches. One of the most know is a spectrogram which 
can be defined as: 

(5)   

2

* 2( , ) ( ) ( ) j fS t f x t h t e dt 






  . 

The length of window  .h  determines the duration of the 

windowed signal  x t . Improving the time localization by 

using a shorter window, results in a broadening of the 
spectrum and consequently the frequency localization is 
diminished. Of course, the reverse will happen if we 
lengthen the window. In that case the frequency localization 
is improved at the cost of the time localization. The effect of 
the window on the local spectrum will be minimal if the 
characteristics of the signal are not altered by the 
application of the window. The simplest way to this aim, is 
to use the signal itself as the window function: 

(6)  * 2( , ) ( ) ( )
2 2

j fWV t f x t x t e d   






   . 

where  ,WV t f is the Wigner-Ville distribution (WVD) [1] of 

the signal  x t . The WVD exhibits the highest signal 

energy concentration in the time-frequency plane for linearly 
modulated signals, but has drawbacks in the cases of 
nonlinear frequency modulated signals. In addition to the 
WVD a number of bilinear distributions have been proposed 
[1, 2] for removing the cross terms. All of them can be 
expressed by the following equation: 
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(7)    2*( , ; ) , ; , ( ) ( )
2 2

j t s fS t f t f x s x s e dsd d        
  

   

  

     . 

This equation, known as Cohen’s class[1,2], allows to 
generate many useful representations by a specification of 
the kernel function  , ; ,t f   .  

For showing properties of the presented methods a 
nonstationary signal has been analysed. The signal 
consists of three components: a simple sinusoidal signal 
with a constant normalized frequency equal to 0.1 which 
lasts from 1st to 512th sample, a simple sinusoidal signal 
with a constant normalized frequency equal to 0.3 which 
lasts from 513th to 1024th sample and a chirp (linear swept-
frequency) signal which starts at the first sample with 
normalized frequency equal 0.15 and ends at the last 
sample with normalized frequency equal 0.25. 
The TFR of this three components signal is shown in Fig. 1-
3. The Fig. 1 shows the spectrogram, the Fig. 2 presents 
the Wigner-Ville distribution and the Fig. 3 shows smooth 
pseudo Wigner-Ville distribution. 

 
Figure. 1. The spectrogram of the three components signal with a 
sliding Blackman window of length N=128 

 
Figure. 2. The Wigner-Ville distribution of the three components 
signal. 

 
Figure. 3. The smooth-pseudo Wigner-Ville distribution of the three 
components signal. 

GPUs - the massively parallel processors 
 The implementation of the Cohen’s class time-frequency 
representations requires large amounts of computing 
power, which can be delivered by modern graphics 
processing units (GPUs).  General-Purpose computing 
using GPUs (GPGPU) has been an area of active research 
for a few years [6]. During this time, graphics processing 
units became massively parallel general-purpose 
processors. Nowadays GPUs have a very high floating 
point throughput (in excess of 5 TFlop/s for AMD Radeon 
HD 6990), a massive memory bandwidth (in excess of 320 
GB/s for NVIDIA GeForce GTX590) and a design conducive 
to data parallelism. These features make them interesting in 
a nonstationary signal analysis, which demands these three 
properties. Moreover, to take advantage of the increased 
programmability provided by GPUs, languages and runtime 
systems such as CUDA [6], ATI Stream and OpenCL [5] 
have been developed. A common problem with the CUDA 
and ATI Stream frameworks is that they can only be used 
with NVIDIA’s or AMD’s GPUs. The OpenCL can be used 
not only with AMD’s or NVIDIA’s GPUs, but also with many 
different platforms and devices provided by a long range of 
developers. 
 
OpenCL 
 The OpenCL framework can be divided into three 
essentials parts [5]: the platform part, which describes how 
OpenCL handles devices, the memory part which describes 
the different memory types on OpenCL devices and the 
execution part which describes how the parts of an 
application (memory objects and kernels) are executed by 
OpenCL. Execution of an OpenCL program occurs in two 
parts: kernels that execute on one or more OpenCL devices 
and a host program that executes on the host. The host 
program defines the context for the kernels and manages 
their execution. The kernels can be executed on a 1D, 2D, 
or 3D domain of indexes (NDRange) that execute in 
parallel, given enough resources. The total number of 
elements (indexes) in the launch domain is called the global 
work size; individual elements are known as work-items. 
Work-items can be grouped into work-groups when 
communication between work-items is required. Work-
groups are defined with a sub-index function (called the 
local work size), describing the size in each dimension 
corresponding to the dimensions specified for the global 
launch domain. The Fig. 4 shows an example of an 3D 
domain index space. 

 
Figure. 4. An example of an 3D NDRange index space showing 
work-items grouped into a local work-group. 
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Cohen’s class implementation on GPU 
 The implementation of Cohen’s class can be carried out 
in three ways. Firstly as the Fourier transform of an 
instantaneous smooth autocorrelation function of the signal: 

(8)    2( , ) , j f
xS t f r t e d  






  , 

where: 

(9)    *( , ) , ( ) ( )
2 2x t dr t t s x s x s ds
   






    . 

Secondly as the result of the two-dimensional Fourier 
transform of a product of kernel function and the 
narrowband symmetric ambiguity function (11): 

(10)     2 ( ), , ( , ) j t f
x d D xS t f A e d d        

 



 

   , 

where: 

(11) * 2( , ) ( ) ( )
2 2

j
xA x t x t e dt  






   . 

And finally as the result of a two-dimensional convolution of 
the Wigner-Ville representation and the inverse Fourier 
transform of a kernel function  ,t d t  : 

(12)    , , ( , )x t f xS t f t s f WVD s dsd   
 


 

    , 

where: 

(13)     2, , j f
t f t dt f t e d    




 


  . 

For analysis efficiency, the results of implementation of the 
first approach has been shown. The implemented algorithm 
consists of two essential steps: computation of an 
instantaneous smooth autocorrelation function and 
determination of the Fourier transform of each column of 
the smooth autocorrelation matrix (the columns represent 
the time variable). It has been implemented three 
procedures to carry out the first step. The first one uses 1-
dimensional NDRange. In this case, the number of work-
items is equal to the number of input samples. The 
procedure can be carried out with or without using local 
variables. The second one uses 2-dimensional NDRange. 
In this case, the number of work-items is equal to the 
product of the number of input samples and the number of 
columns of the smooth autocorrelation matrix. The last one 
uses 3-dimensional NDRange. In this case, the number of 
work-items is equal to the product of the number of input 
samples and the number of columns and rows of the 
smooth autocorrelation matrix. The first kernel needs two 
“for” loops, the second one “for” loop and the third is carried 
out without loops, but requires an implementation of 
procedure for the data exchange between the global and 
local memory. For implemented the Fourier transform fast 
radix2, radix8, radix16 and radix32 methods have been 
used. The results shown in the Fig. 5 and 6 have been 
carried out using GPU AMD Radeon HD5830 and CPU 
AMD 4055e. The analyzed signal has consisted of 4096 
samples. The Fig. 5 shows the time consumed for 
determination of a time-frequency representation in 
dependence of a rank of the function  ,t d t s    when a 

rank of smoothing of the function  ,t d t s   is equal 3.  

The Fig. 6 shows the time consumed for determination of 
time-frequency signal representation in dependence of a 
rank of smoothing of the function  ,t d t s    when a rank 

of the function  ,t d t s    is equal 4095. 

 
Figure. 5. The time consumed for determination of a time-
frequency representation in dependence of a rank of the 
function  ,t d t s   .  

 

 
Figure. 6. The time consumed for determination of a time-
frequency signal representation in dependence of a rank of 
smoothing of the function  ,t d t s   . 

 
Conclusions 
 The paper has addressed the problem of use the GPU 
for a nonstationary signal analysis. As shown in the paper 
the proposed approach can reduce the computation time 
even around 1000x and reduction of 20x can be achieve 
without any special optimization. Moreover the use of GPUs 
and OpenGL allows researchers and practitioners to 
develop numerous practical applications in the area of time-
frequency signal analysis.  
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