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Analysis of jacking force for rectangular pipe-jacking machine 
 
 

Abstract. For the electrical control system of push pipe driving machine, the adjustment of jacking force is critical to balancing the resistance force 
and moving the pipe string forward. This force should be well under control so as to avoid both the collapse (active failure) and the blow-out (passive 
failure) of the soil mass near the tunnel face. The aim of this paper is to determine the collapse and blow-out face jacking force of a rectangular 
tunnel. The analysis is carried out in the framework of the kinematic method of limit analysis theory. The numerical results obtained are presented 
and analyzed. 
 
Streszczenie. W maszynach do przeciskania rur istotną role odgrywa siła przecisku (jacking force). W artykule analizuje się tę siłę dla 
prostokątnego tunelu. (Analiza siły przecisku w przypadku drążenia tunelu prostokątnego przez maszynę przeciskającą rurę). 
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1. Introduction 

Pipe-jacking is a technique employed for installing an 
underground pipe using a shield type driven machine. 
Compared with the traditional trench excavating method, 
this technique possesses the rapid, secure and efficient 
construction and has tiny impact on the environment and 
the traffic of the construction area. Pipe-jacking is widely 
used in recent years around the world. The face stability is 
a key point in construction of underground tunnels. To 
guarantee tunnel face safety, the determination of the 
jacking force applied to the face by the shield is required. A 
soil collapse failure will occur when the jacking force is not 
enough to prevent the movement of the soil mass towards 
the tunnel. On the other hand, a blow-out failure appears 
when the jacking force is so great that soil is heaved in front 
of the shield. The aim of the face stability analysis is to 
ensure safety against soil collapse and blow-out in front of 
the tunnel face. In the construction process, jacking force is 
setting mostly on the basis of the experience of operator. 
And the adjustment of jacking force mainly relies on the 
artificial control method, which leads to some engineering 
accidents, such as ground settlement, ground uplift, 
difficultly in pushing the pipe and collapse failure and so on. 
With the development of electronic technology, the 
automated control system that integrates computer 
technique with photoelectric measuring system and remote 
control system is generated and more usually used in real-
time monitor and adjustment of jacking force. Although this 
method can reduce the engineering accidents to a certain 
extent, the determination of jacking force needs to be 
perfected in terms of theory. 

The study of the analysis of jacking force has been 
investigated by several authors in the literature. D.N. 
Chapman and Y. Ichioka proposed equations for estimating 
the jacking forces associated with different types of 
microtunnelling operations and soil [1]. K.J. Shou and F.W. 
Chang analysed the soil behaviour during pipe-jacking by 
means of physical and numerical models. Their study 
proved that the improper control of jacking force may cause 
the collapse failure or blow-out failure, and a characteristic 
curve was given [2]. Marco Barla et al. studied the jacking 
force on the basis of a field case, the results of which 
showed that there were two sloping sections for each drive. 
And the second part needed to take account of the 
increased friction due to the bore instability [3]. All these 
studies focus on the regular circular tunnels, and predict 
that the jacking force depends on experience, field cases or 
numerical methods. Due to recent advances and 
innovations in theory and practice, the constructions of non-
circular cross section tunnels come true. However, in fact, 

traditional studies concentrate mainly on circular tunnels 
and many theories about the non-circular tunnels are 
incomplete.  As establishing a 3D failure model is extremely 
challenging, few efforts have been made to carry out such 
research. This paper focuses on the analysis of face 
stability of a rectangular tunnel for pipe-jacking. The attempt 
of obtaining the bound of jacking force may be realized by 
means of the kinematical approach of the limit analysis 
theory. Two 3D numerical mechanisms associated with the 
rectangular tunnels are proposed in this paper. Then, the 
numerical results of both the failure mechanisms are 
presented and analyzed. The results in the paper may 
serve as practical tools for face stability assessment of 
rectangular tunnels. 
 
2. Kinematical method of limit analysis 

The aim of the stability analysis is to ensure safety 
against soil failure in front of the tunnel face. Stability 
conditions for this system are derived in terms of the loads 
that can be applied to the system without causing failure. 
An upper bound estimation of such loads is obtained by 
considering a kinematically admissible failure mechanism 
for which the power of the loads applied to the system is 
larger than the power that can be dissipated inside the 
system during its movement (the upper bound theorem) [4]. 
Limit analysis was presented in terms of the theorems by 
Drucker et al. [5] to estimate the critical height of slope. In 
fact, the problem of tunnel face stability is a typical problem 
where a boundary limit load is sought, so the limit analysis 
method is perfectly suited. The kinematical theorem in limit 
analysis is based on the work equation which states that the 
rate of work done by external and body forces is less than 
or equal to the rate of internal energy dissipation for a 
kinematically admissible velocity field with respect to the 
flow rule and the velocity boundary conditions. Generally it 
can be described in the following mathematical form: 
 

(1)    ( )
v t

ij i i v i i t i iV S S V
D dV T v dS T v dS v dV 
 

       

 
The left side of Eq. (1) represents the rate of work 

dissipation during an incipient failure of a structure, and the 
right side includes the work rates of all external forces. Ti is 
the stress vector on boundaries Sv and St. Vector Ti is 
unknown (limit load) on Sv, yet known on St (for instance, 
surcharge pressure). vi is the velocity vector in the 
kinematically admissible mechanism, γi is the specific 
weight vector, and V is the volume of the mechanism [6]. 

In this paper, the soils satisfy the Mohr–Coulomb yield 
condition, and an associated flow rule is adopted. The 
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Mohr–Coulomb function contains two material constants: 
the internal friction angle φ and the cohesion intercept c. For 
purely frictional material c=0, while for purely cohesive soil 
φ=0, with the cohesion identified with undrained strength 
(c=cu). In the case of a three-dimensional and continuous 
deformation field, the flow rule requires the following 
relationship among the principal strain rates: 
 

(2)      1 2 3 1 2 3( ) sin 0      
     

       
 

The solutions will be obtained by simplifying two 

conditions: the plane strain-type ( 0


 ) with the material 
is purely cohesive (φ=0) and the failure mechanism is of the 
rigid-block motion type. In the last case, strain rates are 
zero within the rigid blocks, and Eq. (2) is satisfied within 
blocks identically. The blocks are separated by velocity 
discontinuity surfaces, where the velocity jump vectors must 
be inclined at angle φ=0 to the discontinuities: that is 
 

(3)                              [ ] [ ] tann tv v   
 
where: [vn] and [vt] are the normal and tangential 
components of the velocity jump vector [vi] respectively [10].  
 
3. Collapse failure 
3.1 Geometrical construction of the 3D collapse failure 
surface 

It is not common to construct a 3D failure mechanism of 
a shallow tunnel with a rectangular cross section driven by 
the pressurized shield. Traditional studies focused on the 
single circle tunnels. Some failure mechanisms were 
proposed by some authors to estimate the limit pressures 
applied to the tunnel face. Leca and Dormieux [4] proposed 
a mechanism composed of two conical blocks for the 
collapse case and a mechanism composed of a single 
conical block outcropping at the ground surface for the 
blow-out case. A.-H. Soubra and D. Dias et al. [8] improved 
the mechanism by considering a new mechanism consisting 
of more rigid truncate cones, and presented more optimized 
results. It is necessary to state that the study in this paper is 
inspired by the achievements mentioned above. 
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Fig.1. Collapse mechanism (M1) 
 

At first, the 3D failure surface of a regular tunnel with a 
circular cross section is considered. This mechanism is of 
multi-blocks. It involves the movement of n truncated solid 
conical blocks with circular cross-sections. The opening of 
each cone is equal to 2φ and its velocity is parallel to its 
axis. A mechanism with n=5 is presented in Fig. 1. Note that 
ξi (i=1, 2, 3…n) denotes the cone, and Ωi (i=1, 2, 3…n) 
denotes the truncated block. The presented mechanism is 
completely defined by the angular parameter α, and the 

blocks number n. Then, based on the study of the single-
circular tunnel, the mechanism can be modified with 
cylindrical inserts, to ensure transition to a plane 
mechanism with an increase in the width of the insert [9]. 
The tunnel face can be idealized as a combination 
assembly by two semi-circles with diameter D and a 
rectangle with width D as shown in Fig. 1. Notice finally that 
whether the upper rigid cone ξn in the mechanism will or will 
not intersect the ground surface depends on the φ and C/D 
values. 
 
3.2 Velocity field 
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Fig.2. Velocity hodograph between two successive blocks 
 

The collapse failure mechanism is a translational 
kinematically admissible failure mechanism. The different 
blocks of this mechanism move as rigid bodies. The velocity 
vector of each block has different directions and magnitude. 
According to the normality condition for an associated flow 
rule Coulomb material, for a kinematically admissible failure 
mechanism, the velocity discontinuity along a plastically 
deformed surface must make an angle φ with this velocity 
discontinuity surface [10]. The velocity hodograph is given 
in Fig. 2, where, i=1, 2,…, n, n is the number of blocks; 
parameter α is the angle between the contact surface and 
the vertical direction. 
 
3.3 Work equation 

For a kinematically admissible velocity field the bound 
on the limit supporting force is determined by equating the 
rate of work of external forces W to the rate of work D. This 
is often referred to as the energy rate balance. In this paper, 
the external forces contributing to the rate of external work 
consist of (i) the self-weight of the soil (ii) the possible 
surcharge loading σs and (iii) the pressure σt acting on the 
face of the tunnel. Hence, the unknown limit load (iii) can be 
calculated by using Eq. (1). Associated with the face 
stability analysis of tunnels driven by the pressurized shield, 
Eq. (1) is transformed to the following form: 
 

(4)                                
S TD W W W    

 

where: D represents the rate of dissipation energy, and Wγ, 
WS, WT represents the rate of work done by self-weight, 
surcharge load, and jacking force respectively. 

By means of the velocity transformation relationship 
mentioned above, the calculations concerning the rate of 
work of these forces were carried out. 

Rate of work of the soil weight is calculated from a 
general expression as Eq. (5). 
 

(5)                         sini iV
W v dV v V      

 
where: vi and γi—velocity vector and the unit weight vector, 
respectively, and v and γ—magnitudes, V—the volume of 
the mechanism (underground surface). 

Rate of work of the possible uniform surcharge σs acting 
on the ground surface is calculated from a general 
expression as Eq. (6). 
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(6)                 
2sinS S i SS

W v dS v A     

 

where: A2—the possible area of the intersection of the 
mechanism with ground surface. 

Rate of work of the pressure σt is calculated from a 
general expression as Eq. (7). 
 

(7)                      
1cosT t i tS

W v dS v A       
 

where: A1—the area of intersection of the tunnel face with 
the lower cone. 

Considering that the mechanism is rigid, the source of 
energy dissipation derived from the plastic soil deformation 
only occurs along the velocity discontinuity surface. Rate of 
internal energy dissipation is calculated from a general 
expression as Eq. (8). 
 

(8)                     cos cosiS
D cv dS cv S    

 

where: S—the superficial area of the mechanism 
(underground surface).  

It should be mentioned here that the computation of 
energy dissipation could also be made by using an 
alternative convenient approach (for more details, see 
Michalowski and Drescher [7]). 

By equating the total rate of external forces (Eq. (5)-(7)) 
to the total rate of internal energy dissipation (Eq. (8)), the 
pressure σt can be expressed as follows: 
 

(9)                         +t S S cDN N cN     
 

where: Nγ, Nc and Ns are non-dimensional coefficients, 
representing respectively the effect of soil self-weight, 
cohesion and surcharge loading.  

Notice that Nc and Ns are related by the following 
classical formula (see theorem of corresponding states): 
 

(10)                          tan +1 0c sN N    
 

Hence, in the following, only coefficients Nγ and Ns will 
be presented, coefficient Nc can be obtained through Eq. 
(10). 
 
3.4 Numerical results of M1 (collapse) 

In this section, the values of parameter Nγ
c, Ns

c and the 
critical failure pressure σc for M1 are presented. From Fig. 3, 
it is obvious that, for the same φ, Nγ

c increases with C/D; for 
the same C/D, Nγ

c decreases as φ increases. However, Ns
c 

decreases with the increase of C/D value and vanishes 
beyond a certain C/D, which corresponding to the condition 
of no-outcrop of the upper block. In this case, the surcharge 
loading σs will have no influence on the critical Ns

c value. 
Then, for higher values of φ, it becomes constant for the 
large C/D values corresponding to the condition of no-
outcrop of the upper cone. The phenomenon becomes 
inconspicuous for lower values of φ because it becomes 
harder for the mechanism to outcrop the ground with the 
decrease of φ. The same phenomenon appears in the 
charts of Ns

c. These conclusions coincide with those of Leca 
and Dormieux [4]. 

It is necessary to mention that the number of blocks 
influences the results of Nγ

c, Nc
c and Ns

c. After a detailed 
calculation, the results show that with the increasing of n, 
the results tend to be more optimized. However, when n>10, 
the improvement percentage is smaller than 1%. Hence, the 
results presented in this paper are related to n=10. 

 

 
Fig.3. Values of Nγ

c 
 

 
Fig.4. Values of Ns

c 
 

Through a series of analysis, a characteristic curve for 
the limit jacking force σc is drawn as shown in Fig. 5. This 
curve reveals a lower bound, below which collapse failure 
will occur. When the value of C/D is small, the upper block 
is outcrop, σc decreases with the increasing of C/D; the 
curve becomes constant for the large values of C/D 
corresponding to the condition of no-outcrop of the upper 
block. The trend is consistent with the actual situation. It is 
necessary to note that the case of the C/D<0.5 is 
impractical, so the curve of the limit jacking force does not 
start from C/D=0. 
 

 
Fig.5. Critical collapse failure pressure σc 
 
4. Blow-out failure 
4.1 Geometrical construction of the 3D blow-out failure 
surface 

The blow-out failure will occur when the jacking force is 
so large that soil is heaved in front of the shield. As shown 
in Fig. 6, M2 is a blow-out mechanism. Only two blocks are 
necessary for the blow-out mechanism since an increase in 
the number of blocks improves the solutions by only a few 
percent (1%). The geometrical construction of M2 is similar 
to that of M1, while the M2 mechanism presents an upward 
movement of the soil mass in front of the shield. Thus, the 
cones with an opening angle 2φ are reversed. And contrary 
to M1, M2 is always outcrops. The mechanism is also 
modified with cylindrical inserts, to ensure transition to a 
plane mechanism with an increase in the width of the insert 
[9]. 
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Fig.6. Blow-out mechanism (M2) 
 

M2 is also a translational kinematically admissible failure 
mechanism, and the velocity field and work equation of M2 
is similar to those of M1 (for more details, see 3.2 and 3.3 in 
this paper). 
 
4.2 Numerical results of M2 (blow-out) 

In this section, the values of Nγ
b, Ns

b and the critical 
failure pressure σb for M2 are presented. Contrary to M1, 
the M2 mechanism is always outcrops, so Nγ

b and Ns
b 

increase with the increasing of C/D value as shown in Fig. 7 
and Fig. 8. 

Similar to M1, a characteristic curve for the limit jacking 
force σb is drawn as shown in Fig. 9. Unlike the results of 
M1, the curve indicates an upper bound, above which blow-
out failure will occur. And as the M2 mechanism always 
outcrops, σb and C/D have a positive correlation. 
 

 

Fig.7. Values of Nγ
b 

 

 
Fig.8. Values of Ns

b 
 

 
Fig.9. Critical blow-out failure pressure σb 
 

5. Conclusions 
Two failure mechanisms are presented respectively for 

collapse failure and blow-out failure, to compute the upper 
and lower bound of jacking force of a shallow rectangular 
tunnel for pipe-jacking driven by a pressurized shield. By 
means of the kinematical approach of limit analysis theory, 
numerical results of non-dimensional coefficients Nγ and Ns 
and the limit jacking force σt are obtained. Determination of 
the bound of jacking force is significant to guarantee the 
tunnel face stability and control the ground subsidence. The 
conception of cylindrical inserts is imported to solve the 
modeling problem of the failure surface in rectangular 
tunnels. It can be extended to the discussion of non-circular 
tunnels with other forms of cross section in further study. 
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