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Abstract. Characteristic parameters of blasting vibration (BVCP) have great effects on its damage level. The prediction of BVCP is helpful to study 
blasting vibration effect. In this paper, an attempt has been made to predict blast-induced ground vibration using support vector machine (SVM) to 
avoid the limitation of the prediction with only one index and to improve the prediction precision. A Grid search method-based SVM prediction model 
for BVCP was established on the basis of nonlinear model-based SVM. To construct the model, nine factors affecting blasting vibration characteristic 
variables are taken as input parameters, whereas, peak particle velocity (PPV), dominant frequency (Df) and its time duration (Dt) are considered as 
output parameters. A database consisting of 108 datasets was collected from Tonglvshan copper mine in China. From the prepared database, 93 
datasets were used for the training of the model, whereas 15 randomly selected datasets were used for the validation of the SVM model. To 
compare the performance of the developed SVM model with that of artificial neural network (ANN) model, the same database was applied. 
Superiority of the proposed SVM model over ANN model was examined by calculated coefficient of determination for predicted and measured values 
of PPV, Df and Dt. Concluded remark is that the prediction’s BVCP can reliably be estimated from the indirect methods using SVM analysis.  
 
Streszczenie. Przy przewidywaniu efektów i szkód wibracji wybuchowych ważny jest parametr BVCP – blasting vibration characteristic parameter. 
W artykule przedstawiono model matematyczny do prognozowania efektów drgań wybuchowych z wykorzystaniem metody SVM. (Wykorzystanie 
metody SVM do prognozowania parametrów wibracji wybuchowych w kopalniach odkrywkowych) 
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1. Introduction 

Blasting is still being considered to be one the most 
important applicable alternatives for mining and civil 
construction projects. Ground vibration generated for 
blasting is an undesirable phenomenon which is harmful for 
the nearby habitants, facilities and dwellings and should be 
prevented [1]-[3]. Along with rock mass blasting engineering 
increasing in China, how to analyze and predict the BVCP 
of rock mass from monitor data becomes a focus problem. 

In order to study blasting vibration effect for mining and 
civil construction projects, a number of vibration predictors 
were proposed by many researchers for the prediction of 
PPV [1]-[10]. Various predictors [4] estimate the PPV mainly 
based on two parameters (maximum charge used per delay 
and distance between blast face and monitoring point). And 
formula prediction is still the most direct and easy method 
for designers in China. The Chinese standard predicting 
equation is Sadaovsky's empirical formula. Iphar et al. [5] 
investigated the applicability of a relatively new soft 
computing method called for the adaptive neuro fuzzy 
inference system (ANFIS) to predict PPV. However, few 
predictors considered the attenuation/damping factor [2], 
[6]. To solve this problem, Frequency and PPV are most 
commonly used parameters for assessment of ground 
vibrations, and the ANN was introduced to predict 
characteristic variables caused by blasting vibration, and 
have achieved some results [4]-[6]. Khandelwal and Singh 
[7] studied the blast vibration and frequency using rock, 
blast design and explosive parameters with the help of ANN 
and multivariate regression analysis. Mostafa [8] also 
applied ANN for the prediction and control of blast vibration 
on limestone quarries. But the damage of buildings rests 
not only on amplitude of PPV, but on vibration frequency 
and duration. Recently, a rough set-based fuzzy neural 
network prediction model for characteristic variables of 
blasting vibration was established by Shi et al. [9] based on 
analysis of factors affecting blast vibration characteristic 
variables. Shi and Zhou [10]-[11] proposed the bayes 
discriminant analysis model and distance discriminant 
analysis model to predict the extent of housing damage 
considering the three factors of ground vibrations. Research 
shows that, the developed ANN model has some 
limitations, such as black box approach, arriving at local 

minima, less generalization capability, slow convergence 
speed, overfitting problem and absence of probabilistic 
output [2], [6]-[9]. Furthermore, there is no proper method to 
determine the number of hidden layers in the ANN model. 
The developed ANFIS model determines the fuzzy rules 
with difficulty [5]. Therefore, it is imperative to explore a 
more reasonable way to study of BVCP. 

In the last several years, support vector machine (SVM) 
by Vapnik [12] had become one of the most promising 
learning machines because of its high generalization 
performance and wide applicability for classification as well 
as for regression [13]-[17]. It is therefore motivating to 
investigate the capability of SVM in BVCP prediction. The 
purpose of this study was to explore a method which could 
avoid the limitation of the prediction with only one index and 
to improve the prediction precision. In the present 
investigation, an attempt has been made to predict three 
blasting vibration characteristic parameters with the help of 
SVM by used relevant parameters of rock mass, explosive 
characteristics and blast design. 

The remaining paper is structured in the following 
manner. Section 2 presents a brief introduction to SVM. 
Section 3 describes the development of an SVM-based 
prediction model, and explains the research methodologies 
adopted by this research, results of comparative study with 
the ANN model and the experiments values are also 
discussed. Section 4 concludes the paper and provides 
suggestions for future research.  
 
2. Methodology 
2.1 The basic of SVM model 

SVM [12]-[17] are linear learning machines which means 
that a linear function (J(x)=wx+b) is always used to solve 
the regression problem. The best line is defined to be that 
line which minimises the following cost function (Ω): 
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The first part of this cost function is a weight decay which 
is used to regularize weight sizes and penalizes large 
weights. Due to this regularization, the weights converge to 
smaller values. Large weights deteriorate the generalization 
ability of the SVM because they can cause excessive 
variance. The second part is a penalty function which 
penalizes errors larger than ±ε using a so-called ε-

insensitive loss function 
  for each of the N training 

points. The positive constant C determines the amount up 
to which deviations from c are tolerated. Errors larger than 

±ε are denoted with the so-called slack variables   (above 

ε) and  * (below ε), respectively. The third parts of the 
equation are constraints that are set to the errors between 
regression predictions (wxi+b) and true values (yi). The 
values of both ε and C have to be chosen by the user and 
the optimal values are usually data and problem dependent.  

The minimisation of Eq. (2) is a standard problem in 
optimisation theory: minimisation with constraints. This can 
be solved by applying Lagrangian theory and from this 
theory it can be derived that the weight vector, w, equals 
the linear combination of the training data 
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In this formula, αi and αi* are Lagrange multipliers that are 
associated with a specific training point. The asterisk again 
denotes difference above and below the regression line. 
From Eqs. (2) and (3), the following solution is obtained for 
an unknown data point x: 
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By using a mapping function, the regression function Eq. (4) 
can be changed into: 
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In Eq. (5), K is the so-called kernel function which is proven 
to simplify the use of a mapping. The most used kernel 
functions are the Gaussian RBF with a width of g: K(xi, 
x)=exp(−0.5||x−xi||

2/g2), xi, x are the input feature vectors. 
Thus the type of kernel function is RBF in the current study. 
Further detailed mathematical description over SVM can be 
referred from Ref. [13]-[17]. 

3. A case studey 
3.1 Input and output parameters 

To develop and train the SVM, input and output vectors 
were identified. The nature and intensity of blast induced 
ground vibrations and frequency is largely dependent on 
various factors. In accordance with Shi [2] [5] [9]-[11], the 
following input parameters were used: 1) Maximum charge 
per delay (Q max ) in kg; 2) total charge weight (Q t ) in kg; 3) 
Distance for monitoring point from blasting face (D) in m; 4) 
height difference (HD) in m; 5) front-row burden (B) in m; 6) 
Pre-crack penetration (%); 7) the integrity coefficient of rock 
mass (Kv); 8) the angle between measuring point and the 
direction of least resistance line (α ) in degree; 9) Velocity of 
detonation for explosive (VoD) in m/s. The outputs of the 
SVM are the peak particle velocity (PPV, cm/s), dominant 
frequency (Df, Hz) and its time duration (Dt, ms). 

 

3.2. Dataset 
In this study, the dataset comprised the field experimental 

results of Shi [2] at Tonglvshan copper opencast mine of 
China. Seismic YBJ-1 type of blasting induced vibrations 
self-recording instrument produced by Yangtze River 

Scientific Research Institute and CD-1 type of velocity 
recording instrument supplied by Beijing Instrument Factory 
were adopted in this study. The total database containing 
108 datasets were used for constructing nonlinear models-
based SVM, and 93 test results were selected as training 
samples of model in this paper. Table 1 indicates the 
relevant parameters as well as their respective symbols 
used to develop BVCP prediction models range with their 
max, min, mean, standard deviation and skew, respectively. 
The boxplot of the original data set is given in Fig. 1. For the 
most of the data groups, the median is not in the centre of 
the box, which indicates that the distribution of the most of 
the data groups is not symmetric (Fig. 1). In addition, 
dependent variables of Qt, HD, B, PPR, Kv, α, VoD, Dt do 
not have any outliers whereas Qmax, D, PPV and Df have at 
least one outlier. Another 15 test results (approximately 
14% of all data) were used as the testing samples for 
accuracy of the model [2], which are shown in Tab.2. In the 
present study, training and testing analysis of SVM have 
been carried out using Matlab [18]. And all the input and 
output parameters were scaled between 0 and 1. The 
following equation was used for the scaling of input and 
output parameters: 

 

(6) Scaledvalue= (max.value- unscaled.value)/(max.value-min.value)  
 

 
Fig. 1  Boxplot of the original data set of BVCP  
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Table 1  Descriptive statistics of the input and output parameters for SVM modeling 
Type  

of data 
Parameter Max Min Average Standard deviation Skew 

Inputs 

Q max (kg) 5590.0 160.0 1081.194 968.59 2.647 

Q t (kg) 9000.0 936.0 4263.892 2087.07 0.422 

D (m) 444.3 47.1 176.682 98.91 0.957 

HD (m°) 109.3 6.0 54.494 24.58 0.534 

B (m) 7.0 4.0 5.409 0.81 -0.135 

PPR (%) 100.0 0.0 29.570 42.04 0.797 

Kv 0.8 0.3 0.559 0.14 -0.133 

α (°) 180.0 0.0 128.011 62.70 -0.798 

VoD (m/s) 4200.0 2800.0 3387.097 694.58 0.332 

Outputs 

PPV (cm/s) 5.4 0.1 1.209 1.18 1.585 

Df (Hz) 51.1 14.3 33.955 9.96 -0.111 

Dt (ms) 1655.0 145.0 722.097 375.27 0.288 
 
Table 2  Testing data of BVCP 

No. 
Q max 
(kg) 

Q t (kg) D (m) HD (m) B (m) 
PPR 
(%) 

Kv α(°) 
VoD 
(m/s) 

PPV 
(cm/s) 

Df  (Hz) Dt (ms) 

1 350 1050 114.7 16.8 5 80 0.38 160 2800 0.42 26.5 195 
2 370 2150 70.3 42 7 0 0.73 180 4200 4.75 48.6 985 
3 370 2150 101.2 54 7 0 0.56 115 4200 1.55 49.5 790 
4 494 3952 122.6 62.1 5 0 0.32 120 2800 0.61 41.7 610 
5 730 4380 115.7 50.9 6 50 0.42 180 4200 1.60 25.3 635 
6 840 5660 214.7 75.1 6 0 0.52 120 4200 0.22 38.4 890 
7 890 1800 72.1 42.0 5 100 0.73 80 4200 3.19 39.2 345 
8 890 1800 53.2 30 5 100 0.65 50 4200 2.39 41.6 415 
9 1090 5450 231.9 30.0 5 100 0.72 90 4200 0.50 27.8 650 

10 1290 3870 177.6 73.0 6 0 0.56 180 4200 1.10 40.4 415 
11 1410 6780 189.9 64.0 5 0 0.51 180 4200 1.05 38.3 985 
12 1636 4980 125.1 42.2 4 0 0.55 180 4200 2.12 40.6 830 
13 1790 5370 393.1 98.0 4 60 0.71 50 2800 0.30 16.2 505 
14 1850 8500 68.5 30.0 6 0 0.50 180 2800 3.88 40.6 1380 
15 2180 4360 226.9 106.0 5 0 0.46 60 4200 0.50 26.8 565 

 

3.3. Criterion for model performance 
To test and validate the SVM model, the data sets were 

chosen, which was not used while training the proposed 
model, was employed. So the trained models are applied to 
predicting the BVCP of the other 15 samples. In estimating 
the SVM Model prediction performance, the results of SVM 
models are compared with ANN [2], computing indexes 
such as correlation coefficient (R2) and Root Mean Square 
Error (RMSE) can be used to evaluate the prediction 
accuracy of SVM and MRVR model. These indexes can be 
calculated by the following formula (8) and (9): 
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Where, Qi, Pi and n represent the measured output, the 
predicted output and the number of input-output data pairs, 
respectively. 
 

3.4 Nonlinear Models-Based SVM and Its Apllications 
Then, BVCP prediction with nonlinear model-based SVM 

can be carried out as follows: firstly, the factors influenced 
BVCP should be determined; secondly, training and 
predicting samples were collected; thirdly, the model were 
trained, and reasonable parameters of SVM structures were 
obtained; finally, the trained models were applied to 
predicting BVCP, as shown in Fig. 2. Qmax, Qt, HD, D, B, 
PPR, Kv, α, VoD, PPV, Df  and Dt  were selected as the 
input variables. PPV, Df and Dt were selected as outputs of 

the SVM model. So the mapping 
nΩ   PPV, 

nΩ   Df 

and 
nΩ   Dt, were established. 

nΩ  is input variables of 
the proposed model, n is the variable dimension.  

 

 

Fig. 2  Research architectures for the proposed SVM-based 
approach with grid search method (GSM) method 
 

When applying SVM, the good performance is 
determined by the penalty factor C and insensitive 
parameter g. Libsvm [19] provides a parameter selection 
tool using the RBF kernel: cross validation via parallel grid 
search method (GSM) [15]-[17],[20]. As shown in Fig.2, the 
framework of optimizing the SVM’s parameters with GSM is 
presented, for the grid search, currently we support only C-
SVM with two parameters C and g. In this study, the free 
parameters of SVM were selected followed a 5-fold cross-
validation experiment to control generalization capability of 
SVM, and the RBF kernel is used as the kernel function of 
the SVM because it tends to give better performance. Fig. 3 
shows an example of the GSM result, where the x-axis and 
the y-axis are log2C and log2g, respectively. The z-axis is 
the 5-fold average performance. The findings of this 
experiment were that SVM is quite robust against 
parameter selections. 
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3.5. Evaluation and Discussion 
The result of the SVM parameter selection by GSM is 

shown in Fig. 3, when the penalty factor C is 256.0, 
g=0.0156 and the average value of MSE for PPV is CVmse 
= 0.0815. the penalty factor C is 22.6, g=0.0313 and the 
average value of MSE for Df is CVmse = 0.0396. the 
penalty factor C is 256.0, g=0.0221 and the average value 
of MSE for Dt is CVmse = 0.0396, respectively. 93 sets of 
training sample data were back evaluated one by one using 
the SVM model of BCVP and compared with the actual 
situation. The compared predicted and measured of BVCP 
test results of training data are shown in Fig. 4. The 
regression mean-square error of the study for PPV, Df, Dt is 
0.0326, 0.0170, 0.0112, respectively, and the square 
correlation coefficient is 0.8407, 0.9443, 0.9546, 
respectively (Table 3). From Fig. 4, SVM have good 
performance for regression forecast, which prove that the 
model has stable and reliable prediction ability. Therefore, 
the SVM model is feasible and effective for BVCP 
forecasting and can be put into use. Shown in Fig. 4, the 
prediction curve obtained by SVM training sample fits good.  
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Fig. 3  The fitness curve of selecting best parameters by GSM 
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Fig. 4  Predicted and Measured of BVCP results of train sample by 
SVM method 

Results of SVM were compared to that of ANN [2], and 
measured datas, which are presented in Table 4 and Fig. 5. 
To compare the accuracy of SVM to ANN, the relative 
errors of two methods were listed in Table 4. From Table 4 
and Fig. 5, the following summarizes the results and 
conclusions drawn from this study: (1) The trained SVM 
showed good performance in the training and testing stage; 
(2) we know that the results using SVM are more feasible 
and precise than that using ANN, providing justification for 
using this approach; (3) Various factors affected the blast 
vibration effect, as long as the corresponding data can be 
input to the SVM as variables, and the number of factors is 
not limited. Therefore, SVM can be more comprehensive 
consideration of blasting vibration effect and the relationship 
between factors; (4) The test results usually cost a lot of 
manpower and material resources. In the case of limited 
training samples, SVM based on small samples have more 
feasible and precise accuracy than ANN. Nonlinear Model-
based SVM have good generalization ability and nonlinear 
dynamic data processing capabilities. It has a very good 
state of adaptability to the BVCP prediction. 
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Table 3.  Performance statistics of all models 

 Best C Best g CVmse 
 Train Set Test Set 
 MSE R2 MSE R2 

PPV 256.0 0.0156 0.0815  0.0326 0.8407 0.0305 0.9050 
Df 22.6 0.0313 0.0396  0.0170 0.9443 0.0339 0.8757 
Dt 256.0 0.0221 0.0396  0.0112 0.9546 0.0246 0.8575 
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Fig. 5.  Comparison of forecasting results of test samples 
 

 

Table 4.  Compared results of BVCP by SVM and ANN 

No. 

SVM Relative errors(%) ANN[2] Relative errors(%) 

PPV 

(cm/s) 
Df (Hz) 

Dt 

(ms) 

PPV 

(cm/s) 
Df (Hz) Dt (ms) 

PPV 

(cm/s) 
Df (Hz) 

T 

(ms) 

PPV 

(cm/s) 
Df (Hz) Dt (ms) 

1 0.13 25.8 205 68.74 2.5 5 0.12 25.8 316 70.26 2.6 62 

2 3.50 54.0 954 26.47 11.2 3 4.52 47.5 1118 4.99 2.3 14 

3 1.72 50.1 878 10.50 1.1 11 1.17 48.8 683 24.71 1.4 14 

4 0.25 42.0 700 58.52 0.7 15 0.65 40.6 702 7.57 2.6 15 

5 1.10 32.0 767 31.23 26.6 21 1.64 26.9 720 2.63 6.3 13 

6 0.08 36.9 1006 62.95 3.9 13 0.24 36.2 786 10.09 5.7 12 

7 2.60 41.0 285 18.63 4.5 18 3.35 46.3 279 4.92 18.1 19 

8 2.52 41.0 266 5.44 1.4 36 2.62 38.3 385 9.67 7.9 7 

9 0.78 27.9 581 57.11 0.4 11 0.45 28.6 525 9.27 2.9 19 

10 1.17 40.0 614 5.84 1.1 48 0.99 40.0 598 10.53 1.0 44 

11 1.13 34.8 934 7.66 9.2 5 1.11 35.9 914 6.11 6.3 7 

12 2.53 36.2 871 19.25 10.9 5 2.22 39.8 759 4.33 2.0 9 

13 0.55 13.1 787 82.97 19.2 56 0.31 16.3 398 2.98 0.6 21 

14 3.65 40.3 1325 6.02 0.7 4 3.27 41.7 1411 15.80 2.7 2 

15 0.15 26.6 489 70.78 0.7 13 0.23 24.2 641 53.41 9.7 13 
 
 
4. Conclusions 

This paper describes the development and testing of a 
nonlinear model-based SVM that is suitable for predicting of 
characteristic variables caused by blasting vibration. This 
note has presented the architecture of an SVM and 
compared predicted BVCP using the SVM with ANN [2] and 
measured data. The 93 samples were trained by proposed 

models, the other 15 samples were tested by trained 
models. The correlation coefficients of SVM model for 
predicting the BVCP is more than 0.85, which show the 
models are highly correlated and have good fitting 
performance. The accuracy of SVM was compared to that 
of ANN; the relative errors of two methods were obtained. 
Results show that prediction accuracy of SVM has 
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improved more greatly than that of the ANN. Nonlinear 
Model-based SVM have good generalization ability and 
nonlinear dynamic data processing capabilities, which has a 
very good state of adaptability to BVCP prediction. Overall, 
the SVM showed good performance and it was able to 
satisfactorily predict three BVCP. The architecture and 
approach described in this paper may be of interest to 
researchers and engineers trying to develop empirical tools 
for predicting rock or other complex behavior often 
encountered in geotechnical and mining engineering. 
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