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Abstract. Multidimensional Independent Subspace Analysis (MISA) as an extended Independent Component Analysis (ICA) method has been 
considered. The general and detailed definition, existence, uniqueness, separability of the MISA model are given and the relationships between ICA 
and MISA are also discussed. The natural gradient separation algorithm and corresponding simulation results for MISA are constructed based on the 
maximum likelihood theory and natural gradient method.  
 
Streszczenie. W artykule zaprezentowano metodę MISA – multidimensional independent subspace analysis. Przedstawiono też metode IOCA – 
independent component analysis. Opracowano algorytm separacji – natural gradient separation algorithm. (Wielowymiarowa analiza 
podprzestrzeni MISA wykorzystująca metodę naturalnego gradient) 
 
Keywords: independent component analysis (ICA), blind signal separation (BSS), independent subspace analysis (ISA), natural gradient. 
Słowa kluczowe: analiza ICA – independent component analysis, ślepa separacja, naturalny gradient 
 
  
Introduction 

Standard Blind Signal Separation (BSS) model and 
methods have been successfully applied to many areas of 
science [1, 2]. The basic model assumes that the observed 
signals are linear superpositions of underlying hidden 
source signals. Most of the BSS algorithms are based on 
the independent assumption of the source signals, and are 
called Independent Component Analysis (ICA). However, 
the independence property of sources may not hold in some 
real-world situations, especially in biomedical signal 
processing and image processing, and therefore the 
standard ICA cannot give the expected results. Some 
techniques have been developed in recent years that relax 
the assumptions of basic ICA model and generalize the ICA 
problem. Among many extensions of the basic ICA model, 
several researchers have studied the case where the 
source signals are not statistically independent. Related 
models are generally recognized as dependent component 
analysis (DCA) model. Based on this basic extension of the 
ICA model, lots of DCA models and corresponding 
algorithms emerged [3-18]. 

Applications in which only certain groups of sources are 
independent may be highly relevant in practice. In this case, 
the independent sources can be multidimensional. The 
separation task requires an extension of ICA, which can be 
called independent subspace analysis (ISA) [3] or multi-
dimensional independent component analysis (MICA) [4] or 
group ICA [5]. Throughout the paper, we will call it multi-
dimensional ISA (MISA) model. MISA is a novel BSS model 
where ICA is incorporated with the idea of invariant feature 
subspaces [3]. In contrast to ordinary ICA, MISA does not 
assume that all sources are mutually independent. Instead, 
it assumes that the sources can be divided into couples, 
triplets, or in general i-tuples, such that the source signals 
inside a given i-tuple may be dependent on each other, but 
dependencies among different i-tuples are not allowed.  

Various methods have been proposed to develop MISA 
algorithms [3-9,16]. MISA-related theoretical problems 
concern mostly the estimation of the entropy or of the 
mutual information. For this purpose, the k-nearest 
neighbors [6], FastISA methods [7], and the relative 
gradient methods [8] can be applied. Other recent 
approaches seeking independent subspaces via kernel 
methods [9] or joint block diagonalization [16] are also 
constructed. 

In this paper, we present a new perspective of MISA 
method for BSS. After a general description of the MISA 

model, we discuss in detail the definition of MISA and the 
relationship between ICA and MISA from models to 
algorithms. As the solutions to MISA problem are not 
unique without extra constraints [15], we also discuss in 
detail the separateness and uniqueness of the MISA 
models and the corresponding separation theorem. 
Furthermore, based on the maximum likelihood theory and 
natural gradient method, the natural gradient separation 
algorithm for MISA model is constructed. Simulation result 
shows that the proposed algorithm is able to separate the 
MISA mixed source signals. 
 
Basic MISA Model 

The idea of MISA is that we do not require full 
independence of transform 
(1)  ( ) ( )t ty Wx , 

but mutual independence of certain tuples 
1

( ) ( )( , , )
m

i i
i iy y , 

1, ,i d  , and  

(2)  ( ) ( ) ( )t t t x As n , 

where T
1( ) ( ( ), , ( ))Nt s t s ts   is an unknown source vector, 

and ( )is t , 1, 2, ,i N   can be random variables or time 

series. The mixtures T
1( ) ( ( ), , ( ))Mt x t x tx   are called 

sensor outputs. T
1( ) ( ( ), , ( ))Mt n t n tn   is a vector of 

additive noise. Matrix [ ] M N
ija  A R  is an unknown non-

singular mixing matrix; no particular assumptions on the 
mixing coefficients are required. If the size of all tuples is 
restricted to one, the model becomes a general ICA model. 
In general, the tuples could have different sizes, but for the 
sake of simplicity, we assume that all tuples have the same 
size m (we define it as regular MISA) and that dm  sources 
are to be extracted from equally numbered mixtures. If the 
model has one tuple only and components in the tuple are 
statistically dependent, it becomes the general DCA model. 

Hyvarinen and Hoyer [3] first presented the regular 
MISA model by combining the principle of invariant feature 
subspace analysis, where the dependence within a k-tuple 
is explicitly modeled enabling the authors to propose better 
algorithms without having to resort to the problematic 
multidimensional density estimation. 

In the case of regular MISA, it is assumed that the 
source random vector s  is only m-independent (i.e., 
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(1) (1) T
1( , , )ms s , ,

1

( ) ( ) T( , , )
md m

d d
mds s

 
  are mutually independent). 

In the following, we give the MISA model definition and its 
indeterminacy. Cardoso [4], Theis [5], and Blanchard [19] 
generalized ICA to DCA from different views. In this paper, 
we define MISA consulting the definition of DCA of them.  

Definition 1. A random vector y  is called an 

independent component of the random vector x , if there 
exists an invertible matrix A  and a decomposition 

1( , , )dx A y y , where ( ) ( ) T
1( , , )i i

i my yy  , such that iy  

and jy  are stochastically independent, , 1, ,i j d  . 

Definition 2. Let 1, , dE E  be d  linear subspaces of 
dmR . They are recognized as linearly independent if any 

vector x  of 1 dE E  admits of a unique decomposition 

as 

(3)  
1

d

kk
 x x ,  

with k kEx  for 1 k d  . In such a case, the vectors 

1, , dx x  are called the linear components of x  on the set 

1, , dE E .  

Definition 3. A random vector x  is defined as 
irreducible if it contains no lower-dimensional independent 
component. 

Definition 4. An invertible matrix W  is called a general 

MISA of random vector x  if 1( , , )dWx = s s  with pairwise 

independent, irreducible random vectors is , 1, ,i d  , the 

sizes im  of each is  are arbitrary and satisfy 

1 dm m N   . If all im  are equals and idm N , the 

separation is defined as regular MISA. 
Theorem 1. (Existence and Uniqueness of MISA)[15-

16]. Given a random vector x  with existing covariance, an 
MISA of x  exists and is unique except for permutation of 
components of the same dimension and invertible 
transformations within each independent component and 
within the Gaussian part. 

Definition 5. The canonical MISA decomposition (if it 
exist) of a vector x  is the unique MISA decomposition of x  

into 
1

d

dp
 x x  such that: 1) there is at most one 

Gaussian component; 2) no non-Gaussian component is 
irreducible. 

In the ICA model, given the signals, sources 
( 1, , )is i N   can be recovered only up to sign, arbitrary 

scaling factors, and an arbitrary permutation. The MISA 
task has more freedom: signals is  can be recovered up to 

an arbitrary permutation and an m-dimensional linear, 
invertible transformation. It is easy to see this by 

considering matrix dm dmC R  made of a permutation 

matrix of size d d , where each element is made of an 

m m  block-matrix having invertible iC  blocks replacing 

the non-zero elements of the permutation matrix. Then,  

(4)  1 x As AC Cs ,  

and since is  is independent of js , i iC s  is independent of 

,j j i j C s . That is, in the MISA model, matrices A  and 
1AC , sources is and i iC s  are indistinguishable. This 

ambiguity of the MISA task can be lowered by assuming 

{ } 0E s , and T{ } mdE ss I , where { }E   is the expected 

value operator, mdI  is the md-dimension identity matrix. 

Similarly, by scaling observed signals x , one can assure 

that { } 0E x  and T{ } mdE xx I , which is called the 

whitening of the inputs. Then,  

(5)  T T T T{ } { } mdE E  xx A ss A AA I .  

It follows that under our assumptions, signals is  can be 

recovered up to permutation and m-dimensional orthogonal 
transformation in the MISA problem. In other words, if 

m m
i

C R  is an arbitrary orthogonal matrix, then signals x  

will not provide information whether the original sources 
correspond to is  or, instead, to i iC s . For the 1-D case this 

is equivalent to the uncertainty that 1i C  or 1i  C . That 

is, in 1-D, the sign of is  cannot be determined. Thus, 

without any loss of generality, it is satisfactory to restrict the 
search for mixing matrix A  (or, for its inverse, i.e., for 
separation matrix W ) to the set of orthogonal matrices. 

Definition 6. We call matrix A  k-admissible if for each 
, 1, ,r s d  , the ( , )r s  sub-k-matrix of A  is either 

invertible or zero. (Note that this is not a strong restriction.) 

Theorem 2. (Separability of MISA)[15]. Let N NA R  
and s  be a m-independent N-dimensional random vector 

having no Gaussian k-tuple T
1( , , )rm rm ms s   . Assume that 

A  is m-admissible. If As  is again m-independent, then A  
is m-equivalent to the identity. 

Note that for 1m  , this is linear ICA separability 
because every matrix is 1-admissible. As a result, we give 
the MISA model by taking the multiplicative model partition 
of the entries of matrix and vectors as: 

(6)  1 11 1 1

1

( ) ( )

( ) ( )

( ) ( )

d

d d dd d

t t

t t

t t



     
          
          

x As

x A A s

x A A s


    



or

, 

where ix  and is  of x  and s  are vectors of dimension m 

respectively and can be defined as ( ) ( )
1( , , )i i

i mx xx   and 
( ) ( )
1( , , )i i

i ms ss   for 1, ,i d  . Partitioned matrix A  is of 

size dm dm  since its entries ijA  are matrices of size 

m m . The following assumptions are needed: 1) 

Components is  are vector-valued, non-Gaussian, mutually 

independent and of identity covariance; 2) Entries of each 

is  are not independent and all are of equal dimension m; 3) 

Sample data is centered and whitened. The whole mixed-
separation MISA process is described in Fig.1. 

1 ms R

2 ms R



d ms R

1 mx R

2 mx R



d mx R

1 my R

2 my R



d my R

A W

md mdA R md mdW R  
Fig.1. The whole mixed-separation MISA process. 

 
In Fig.1, dms R  is the hidden independent subspaces; 

dmx R  is the observation and ( ) ( )t tx As ; dmy R  is the 

estimated sources and ( ) ( )t ty Wx . 
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Proposed Algorithm for MISA 
Based on the estimation of the entropy or of the mutual 

information, a number of methods have been proposed by 
various authors to develop MISA algorithms. In this section, 
we first give the performance index of the MISA algorithm, 
and subsequently the natural gradient based MISA 
algorithm is derived. 

Performance Index of MISA Algorithm 
If the MISA algorithm works properly, the product of the 

estimated separation matrix W  and the original mixing 
matrix A  produces a permutation matrix made of m m  
blocks. The distance of WA  and the block permutation 
matrix are measured by using a generalization of the Amari-
distance [6, 16]. Let P WA  and ijb  denote the sum of 

the absolute values of elements at the intersection of the 
( 1) 1, ,i m im    rows and the ( 1) 1, ,j m jm    

columns of matrix P . Then the generalized Amari-distance 
PI is defined as follows:  

(7)  

1

1

1

1

| |1
( ) 1

2 max | |

| |1
1 0

2 max | |

d
d

ijj

i j ij

d
d

iji

j i ij

b
pI P

d b

b

d b









 
 
 
 
 
   
 
 








 

where 
( 1) 1 ( 1) 1

| |
jmim

ij pq
p i m q j m

b
     

   P  for 1 ,i j d  . Clearly, 

( ) 0PI P  and it is zero if and only if matrix P  is a 

permutation matrix permuting m m  block matrices. 
Natural Gradient Learning Algorithm 
For simplicity purpose, we consider here only the case 

where M N  and ( ) Nt s R  are divided into d number of 

m -tuple (where m  represents the dimension of subspace, 

i.e., N dm ). In this case, the data matrix given by 
N TX R  and a linear transform that MISA seeks is given 

by N NW R . We also assume an identical dimension, m , 
for every feature subspace. 

MISA finds a linear transform W  that maximizes the 
independence of the norms of the projection in linear 
subspaces. The cost function ( , )W X  is taken as the 

negative normalized log-likelihood, which has the form  
(8) 

 2

1 1

1
( , ) log ( ) log | det( ) |

j

T m

i
t j i

p y t
T   

 
    

 
 W X W



 . 

We define  

(9)  2 2( ( )) log ( ( ))
j j

i i
i i

y t p y t
 

  
 

,  

where the probability distribution ( )p   is assumed to be 

super-Gaussian as in [3]. We also define 
T

1( ) [ ( ), , ( )]Nt t t   , where 
( )

T 2( ) ( ( ))
j i

i ll
t t


 w x


 and 

( )j i
  is the feature subspace to which iw  belongs. Then, 

applying the gradient descent method, leads to the following 
updating rule for W  [8]: 

(10) 
T T

1

( , )

{[ ( ( )) ( )] ( )}
T

t

t t t



 




 


   
 



W X
W

W

W y x




 

where 0   is a learning rate, p p    (negative score 

function), i.e., 1/ 21
( ( )) ( )

2i it t     , and � is the 

Hadamard product (which is the element-wise product). 
Define a matrix  

(11) [ (1) ( )] N TT   R   

where ( ) ( ( )) ( )t t t y   . Then, (10) can be written in a 

compact form  

(12)  T T   W W X . 

In the case where the data matrix X  is already 
whitened, the linear transform W  is constrained to be an 
orthogonal matrix. The cost function is hence simplified as 

(13) 2

1 1

1
( , ) log ( )

j

T J

i
t j i

p y t
T   

 
    

 
 W X



 . 

The associated gradient descent algorithm is also in a 

simpler form T  W X , which was originally proposed 

by [4]. Based on the theory of Riemann manifold and the 
natural gradient method of ICA, we can derive the natural 
gradient based MISA algorithm: 

(14)  ( ) ( ) T ( )( ) [ ]k k kk  W I Y W . 

 
Simulations 

In this section, we will give some simulations to verify 
the efficiency of the proposed natural gradient based MISA 
algorithm. 6 pieces of 2-dimensional independent sources 
are chosen, none of them are linearly separable in 2-
dimensional spaces. For the sake of visualization, sources 
formed simple 2-D patterns. 2-D samples are generated 
form letters, alike in Fig.2 (a). Random matrix of dimension 
12×12 is used to mix the sources. 6 pieces of 2-D 
projections of the mixed sources are shown in Fig.2 (b). The 
proposed algorithm is applied to the mixed signals. Results 
of the separation are shown in Fig.2 (c). The MISA 
algorithm could recover the sources up to permutation and 
the directions within the subspaces. This feature is 
illustrated in Fig.2 (d) by the product of the true mixing 
matrix and the estimated separation matrix. This matrix is 
close to a permutation matrix made of 2×2-sized blocks as 
expected. After convergence, the Amari index equals to 
0.0154. 

 
(a) 2-D source signals 
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(b) 2-D mixed signals 

 
(c) 2-D estimated signals 

 
(d) 2-dimensional performance matrix 

Fig.2. MISA results for 2-D data.(a)2-D source signals; (b) 2-D 
mixed signals; (c) 2-D estimated signals;(d) 2-D performance 
matrix 
 
Conclusions 

We discussed the MISA definition and the relationships 
between ICA and MISA from models to algorithms. 
Moreover, the separateness and uniqueness of the MISA 
models have been discussed in detail and the 
corresponding separation theorems are also derived. Then, 
the natural gradient based MISA algorithms were derived. 
Simulation results showed that the proposed algorithm can 
work well.  
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