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Graph’s theory approach for searching the shortest routing path 
in RIP protocol: a case study 

 
 

Abstract. Routing is a problem domain with an infinite number of final-solutions. One of the possible approaches to solving such problems is using 
graph theory. This paper presents mathematical analysis methodologies based on circular graphs for solving a shortest path routing problem. The 
problem is focused on searching for the shortest path within a circular graph. Such a search coincides with the network routing problem domain. In 
this paper, we introduce in the detail all necessary parts needed to understand such an approach. This includes: definition of the routing problem 
domain, introduction to circular graphs and their usage, circular graph’s properties, definition of walks through a circular graph, searching and 
determining the shortest path within a circular graph, etc. The state of the art routing methods, implemented in contemporary highly sophisticated 
routers, includes well-known weight-based algorithms and distance-vectors-based algorithms. The proposed solution can be placed between the two 
abovementioned methods. Each of these known methods strives for optimal results, but each of them also has its own deficiencies, which should be 
rectified with the proposed new method. This theoretically presented method is argued by a practical example and compared with the RIP (Routing 
Information Protocol) technique, where we look for the shortest path and possible walks through a specified circular graph. 
 
Streszczenie. W artykule zaprezentowano matematyczną analizę bazująca na teorii grafów do rozwiązania problemu poszukiwania najkrótszej 
ścieżki routingu. Przedstawiono problem routingu oraz grafy kołowe i ich użycie. (Wykorzystanie teorii grafów do poszukiwania najkrótszej 
ścieżki routingu w protokole RIP) 
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Introduction 

Contemporary highly-sophisticated network applications 
represent a leading circumstance which dictates continuing 
development of new innovative and effective approaches 
for improving networks’ performances. One of the most 
critical problems of the communication domain still remains 
the routing problem [1]. It has perceivable influence on 
packet delays, probability that packets will reach its 
destinations as well as on the link utilization between 
individual nodes. A routing algorithm belongs to the so-
called NP complexity group [32], where an optimal solution 
for a specific problem could be found in polynomial time. 
We are usually satisfied with every good solution, but 
generally such a solution besides advantages also has its 
disadvantages. One of the solutions can be found with the 
routing method based on circular graphs, which will be 
introduced in this paper. 

It is possible to find numerous articles related to circular 
graph theory [33] in many bibliographic databases. This 
theory being mostly used in the mathematical area [2], but 
also in other areas such as: multiprocessor systems [3], 
parallelism and redundancy identification [4], approach to 
recognizing Hamming properties [5], searching intersections 
of longest paths [6], wireless sensor networks [8] where 
spanning three graphs are mostly used [7], etc. In practice, 
network planners and innovators avoid network topologies 
that incorporate cycles, such as circular graphs definitely 
are. Such cyclic connections are usually undesired. Other 
routing protocols remove the cyclic or redundant 
connections from routing tables, RIP [9], for example. With 
this research, we make a step forward and present the main 
idea; how the circular graph theory can be useful in routing 
algorithms without fear that the traffic will start cycling. The 
concept introduced in the following chapters is brand new 
and very radical, because some criteria (symmetry, full 
connectedness and cyclic) must be fulfilled before such a 
concept can be implemented. The original contribution of 
this research is the idea about CIGRP (Circular Graph 
Routing Protocol), which will be based on circular graph 
theory and will be able of mutual operation with other 
routing protocols. In this paper, we show how to use circular 
graphs as a fundamental part of the routing protocol and at 

the same time the concept of integration of this idea into the 
existing protocols (RIP for example). An original contribution 
is also a divided mutual interoperability concept of deciding, 
which routing method will be in use at a specific moment 
considering actual network topology and nodes 
connectivity. 

The reason why we propose a new routing algorithm 
based on circular graph topology is tightly connected with 
the topology simplifying aspect. With the help of the 
connectivity matrix, the algorithm is capable to find the 
shortest path between nodes u and v in a very simple way. 
This path is calculated from a set of all possible paths 
connecting nodes u and v by using a mathematical 
procedure presented within next subsections [35]. In this 
case, we do not need to calculate distance vectors based 
on Bellman-Ford algorithm [10], which is used in RIP. This 
algorithm is used in most routing protocols based on 
distance vectors, but has the following disadvantages: 

• Network topology changes are not reflected fast 
enough, because they travel from one node to another. 
Such procedure continues till all nodes are informed about 
the change (our concept also has this disadvantage). 

• Cycling to infinity which appears if one node 
becomes unreachable, whereas its neighbours increase 
distance estimation to infinity; during such a scenario 
packet cycling can appear (for our case, we present two 
methods of preventing those scenarios). 

The benefit of our approach is limited only to network 
segments, which can be described with circular graph 
topology, where we can search for the shortest path in a 
simple way. In other cases the proposed method is 
excluded. This is also the reason, why we always combine 
CIGRP with another major routing protocol (in our case 
RIP). 

In the second chapter, we want to acquaint the reader 
with the basis of the routing problem domain [1]. This 
chapter also introduces certain state of the art solutions 
implemented into modern routers. One of these is the 
routing algorithm based on distance vectors [11]. The third 
chapter presents the definitions of the basic circular graph 
properties including circular graph symmetry, circular graph 
diameter and connectedness between nodes within a 
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specific circular graph. The same section also presents one 
of the possible examples of circular graph implementation. 
The fourth section presents the procedure of exploring 
available paths, connections, etc. We introduce a method 
which, within a set of all connections, searches for the 
optimal connections between communicating nodes of the 
circular graph structure. An optimal path is always 
composed with the best particular connections between 
individual nodes along the whole routing path. The fifth 
section presents the mathematical derivation of the 
equations with which the optimal path in a circular graph is 
calculated. The sixth section presents the cyclic structure 
searching procedure upon real network or network 
segment, meanwhile in seventh section is presented the 
proposal, how can be the proposed CIGRP concept 
included into existing routing protocols, such RIP is, etc. 
The eighth section concludes the paper.  
 
Routing problem domain 
The packet exchange problem can be generally described 
in the following manner; let the given network be 
constructed of n nodes, each of them containing zero or 
more packets, and let there be a well-known destination 
node for each packet. We want to find an appropriate 
routing algorithm procedure which will allow packet 
exchange according to the limitations arising from the 
topology and from the routing model. The simplest example 
represents a scenario where each packet has exactly one 
destination, and for each destination node, there is exactly 
one packet. Such a routing problem is called ‘one-to-one’. 
But there also exists a ‘many-to-one’ routing problem, 
where many packets have the same destination target. The 
opposite of this is the so-called ‘one-to-many’ routing 
problem, where one packet has more than one destination 
addresses. In this case, the algorithm sends more copies of 
the same packet to different destinations. Another well-
known routing problem is when resource packets appear 
during the routing procedure. In this case, we have to deal 
with simultaneous routing. An example of such a case is 
when packets are generated within the routing procedure 
and do not have defined destinations. The destination is 
then calculated within the routing procedure. Packets 
without defined destination addresses can be understood 
as an additional routing parameter, which serves as 
background information on where the new packets with a 
precisely defined destination address originate. 
General routing problems is a group of routing problems, 
where the total number of packets is predefined and well-
known before routing starts. These packets have predefined 
destinations. Such a problem can also be called a (N, p, k1, 
k2)-routing problem, where N represents the total number of 
packets at the start stored in p nodes. At the start, each 
node cannot have more than k1 packets, and at the end 
each destination node cannot have more than k2 packets 
stored. General routing problems usually disperse into 
several problems divided into different classes. 
An example of ‘many nodes–same message’ represents a 
scenario where many nodes transmit or receive the same 
message within the routing sphere, which means that we 
have to deal with ‘one-to-many’ and ‘many-to-one’ routing 
problems. One-node transmitting is when one node 
transmits the same messages to other nodes within the 
network. With ‘many-node’ transmitting (broadcasting) each 
of the n nodes transmits one message to all other nodes. 
This is simultaneous n-multiply one-node transmitting. 
When such a scenario is used, n different messages appear 
within the network. ‘One-node’ collecting is the opposite 
operation of ‘one-node’ transmitting, and the ‘multi-node’ 
collecting procedure is the opposite of the multi-node 

transmitting. Permutation routing problems are also well-
known. These are problems when exactly one packet is 
destined to node π(x) and has its start point in each node 

x, where π represents the permutation of the node-set for a 
given network. Such a scenario is also called a group of 
permutation routing problems. 
 
Introduction to circular graphs 

As the name suggests, the k-circular graph is 
constructed of k repetitions of specified circular (cyclic) 
structure. This representation is, under specified conditions 
(more about these conditions later), completely correct 
because a 1-circular graph represents a cycle, while a 2-
circular graph represents two interlaced cycles and a k-
circular graph k interlaced cycles. Figures 1a and 1b 
illustrate the simplest 1-circular graph example G(7;±1) 
represented in two different ways. The difference between 
both graphs is only in the node’s arrangement on a flat 
surface; graphs 1a and 1b are isomorphic, because both 
represent a cyclic length of 7. From this point of view the 
human eye can detect these two graphs as being different, 
but ultimately both have one cycle. The nodes in Figure 1b 
are not directly connected with their neighbors (if we are 
looking at nodes arranged on a flat surface), but are 
connected with their neighbors’ neighbors. If we rename the 
nodes in graph 1b (nodes are marked from 0 to 6 in the 
anti-clockwise direction), then we obtain the G(7;±1) graph’s 
isomorphic 1-circular graph G(7;±2) (Figure 1c). In this 
graph node 0 is connected with node 2, node 1 with node 3, 
node 2 with node 4 and so on. Similarly, a graph based on 
seven nodes, where each node is connected to its 
neighbors’ neighbor (depending on node arrangements on 
a flat surface), can be marked as G(7;±3) (Figure 1d). The 
graphs shown in Figures 1a, 1c and 1d represents three 
different 1-circular graphs based on seven nodes. The fact 
is that graphs G(7;±2) and G(7;±3) are isomorphic in 
comparison to graph G(7;±1), which is the reason why 
generalization of 1-circular graphs cannot be made. On 
G(8;±2), it is noticeable that this graph bisects into two 
cycles of length 4 (Figure 1f). From this aspect, it is not 
isomorphic to cycle G(8;±1). Graph G(n;±h) is isomorphic to 
graph G(n;±1) when and only when the largest common 
divider of numbers n and h is 1 (gcd(n, h)=1)). As with 1-
circular graphs with cycle lengths n, we can similarly state 
this (a bit superficially) for two-cycle graphs. These 
represent graphs, which consist of two interlaced cycles. An 
example of two interlaced cycles is illustrated in Figure 1e, 
which shows the graph G(7;±2,±3). We obtain this graph 
when connecting nodes with mutual connections from 
graphs G(7;±2) and G(7;±3). Graph G(7;±2,±3) can be 
obtained from G(7;±2) and G(7;±3) if we draw the first over 
the second. Inaccuracies regarding the before-mentioned 
definition are reflected in the next case. Graph (8;±2,±3) 
(Figure 1h) is constructed using three cycles – two cycles of 
length 4 obtained from the graph G(8;±2) and one cycle of 
length 8 obtained from the graph G(8;±3). Numbers 8 and 2 
for G(8;±2) are not co prime, which is the reason why the 
cycles are reduced. If we consider the abovementioned 
statement, the definition can be corrected, and written in a 
new form. A two-circular graph G(n;±h1,±h2) consisting of 
gcd(n,h1) cycles of length n/gcd(n,h1), and gcd(n,h2) cycles 
of length n/gcd(n, h2). For an ordinary k-circular graph 
G(n;±h1,,±hk) we cannot state, that it is constructed of k 
cycles of length n, but we can say, that each iє{1,2,,k} 
contributes gcd(n, hi) cycles of length n/gcd(n, hi). 

In addition to the number of nodes n and connections' 
length hi for iє{1, 2,, k}, the connection type is also very 
important. We distinguish between oriented and non- 
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oriented connections. Considering the mentioned 
connections we can distinguish between oriented, non-
oriented and part-oriented circular-graph types. The 
definitions for the first two types are evident from their 
names while, the third one has some connections oriented, 
while others are non-oriented. The individual node degrees 
(the number of connections a node has to the other nodes) 
are equal in all three cases, the difference only being in the 
function of an individual connection, which performs certain 
tasks in a circular graph. An oriented k-cycle graph has k 
input and k output connections for each node; meanwhile a 
non-oriented graph has 2k input and 2k output connections 
for each node. An oriented k-loop graph can be denoted as 
G(n;h1,,hk), and a non-oriented as G(n;±h1, ,,±hk) [35]. 
 

 
Fig. 1. Simplest circular graph examples G(7;1), G(7;2), G(7;3), 
G(7;2,3), G(8;3), G(8;2, 3) 
 
Circular graphs’ usage 

A good network topology should have a small diameter, 
a small average distance between nodes, small nodes’ 
degrees, and few links, which must be reliable, expandable, 
and symmetrical. Some of these listed properties mutually 
exclude each other, and an ideal topology actually does not 
exist. The topology that has certain advantages in some 
abilities has disadvantages in others. For example; a ring 
with oriented connections has a simple structure and can be 
easily implemented, but from other aspects it has a large 
diameter and is very unreliable, because the graph 
becomes disconnected if one connection or node falls out. 
A fully connected graph is the opposite in comparison to the 
ring. It is very reliable, but has many links and high 
individual node degrees. Fully connected topology 
implementations require complicated hardware equipment, 
especially in networks with a lot of nodes. In practice these 
topologies are rarely used. Circular graphs’ topologies are 
placed somewhere between both mentioned extremes. 
They have small diameters, high reliability, they are 
expandable and symmetrical. For a node of degree 4, the 

graph’s diameter is defined by equation O n , where “O” 
represents the order of magnitude. Because of these ideal 
properties, circular graphs are often in use for modeling 
local and wide-area networks, and for linking schemes for 
processing units of multiprocessor systems. Nowadays, 

circular graphs are the best solution for FDDI-tokens, SILK 
and SONET/SDH rings, and in different parallel processing 
systems. Topological properties and properties connected 
with routing have been one of the main research subjects in 
the last few decades, but to-date there are still some 
questions unanswered. One of them is the question of time 
complexity for diameter calculation when k is bigger than 2. 
 
Circular graph properties 

Symmetry: The node symmetry [18] is a main circular 
graphs’ property, which can be formally defined with the 
help of graph automorphism [3]. 
 
Definition (1): Let A be the bijective mapping of nodes set V 
of the G(V,E). Mapping A represents the graph’s G(V,E) 
automorphism, if for any nodes pair u,vV,  for which 
(u,v)E, (A(u),A(v))E is true. 
     
Graph’s G(V,E) automorphism is each bijective mapping 
(permutation) on a set V which keeps the neighborhoods. 
 
Example: For each i{0, 1,, n−1} mapping Ai:V→V, is 
defined as Ai(v)=v+i (mod n), automorphism of the circular 
graph G=G(n;h1,, hk), where v+i (mod n) means summing 
up module n. If nodes u and v in G are neighbors, then in G 
nodes u+i (mod n) and v+i (mod n) are also neighbors 
because from u=v+h (mod n) directly follows u+i=v+i+h 
(mod n). The modular arithmetic is described in [7]. 
 
Definition (2): Graph G=G(V,E) is vertex transitive, if for 
each node pair u,vV, such graph automorphism G exists 
that maps node u into a node v.  
 
Theorem (1): Circular graphs are vertex transitive. 
Proof (1): Let u and v be arbitrary nodes of a given circular 
graph G(n;h1,,hk). If we mark ω with ω=v−u (mod n), 
where ω=v−u (mod n) represents subtraction according to 
module n [19], then mapping Aω:x → x+ω (mod n) is 
automorphism and Aω(u)=v is true. 
 
Consequence (1): Let u and v be arbitrary points of the 
specific circular graph and let e = ξi1 ξi2 … ξil be the 
connection type sequence, which connects points u and v. 
Then we can say that e links points 0 and ω = v − u (mod n) 
lying on this graph. 
 
Proof (2): Automorphism A : x → x − u (mod n) translates 
the node u into 0, and the node v into ω. Such connection 
sequence is on the original graph presented as a link 
between u and v. 
 

Following this consequence, the problem of searching 
for the shortest paths between all pairs, is simplified and 
translated into the problem of searching for the shortest 
paths between point 0 and all other available points on the 
circular graph. The graph separation symmetry could be 
defined similarly as the node symmetry.  Such symmetry 
could be defined using the following approach: graph G is 
separation symmetric (arc-transitive) if for each pair of 
neighboring pairs (u, v) and (x, y) an automorphism which 
translates a point u into a point x, and point v into a point y 
exists. We have to know that circular graphs which are arc-
transitive exist (for example, G(8; ±1,±3)) but, in general, 
this is untrue. 

 
Theorem (2): Circular graphs are generally not arc-
transitive.  
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In order to prove this, we have to look at the G(8;±1,±2) 
graph. The link, connecting points 1 and 2, lies on a cycle of 
length 8, while the link connecting points 1 and 3 lies on a 
cycle of length 4. Automorphism of graph G, for example, of 
the first connection, cannot translate it into another 
connection, and because of this graph G cannot be arc-
transitive. 

Connectivity: A circular graph, defined by parameters 
n,h1,,hk, has a connection [20, 22] when, and only when, 
the numbers n, h1,, hk don’t have a common factor, 
respectively when gcd(n, h1, h2,, hk)=1 is valid. This thesis 
is also valid for non-oriented circular graphs. If g=gcd(n, h1, 
h2,, hk)1, then we can reach from node 0 only those 
nodes whose mark/sign is a multiple number of g. In the 
opposite case, only when g=1, such as numbers 
a'

0,a
'
1,…,a'

k, exist that worth a'
0n+a'

1h1+a'
2h2+…+ a'

khk=1. 
Such numbers can be calculated with an extended Evklids’ 
algorithm. If for each i=1,…,n with ai denoting the remainder 
when dividing the number a'

i by n, so that ai= mod(a'
i n), 

then ai are natural numbers for which the next thesis is 
valid: 
  
(1)                       a1h1 + a2h2 + … + akhk  1 (mod n) 
 
From this we can conclude, in regard to this connection, 
that node 0 is connected with node 1 and, consequently, 
with all other nodes on the graph. Gcd(n,h1,h2,…,hk)=1 
represents the conditions for graph connection. Namely, we 
can ascertain that each circular graph is correctly 
connected regarding links and nodes (graph stays 
connected if we remove less than k links or nodes, 
respectively), and that with a little more effort each k-
circular graph can, regarding connectedness, become 2k-
connected. Even each two-circular graph with more than 5 
nodes upon nodes can be 4-connected. 
 

 Diameter: A circular graph’s diameter [20] 
depends directly on the numbers n and h1,…, hk with an 
order of magnitude O(n). Along those graphs with a 
diameter n, graphs with much smaller diameters can also 
be found. The precise diameter values for circular graphs 
are unknown. This is also true for non-oriented graphs and 
k-circular graphs. Estimating its lower boundary lb(n) is also 
common. These estimations depend on links-orientation 
and on the number k. In all cases, they are in the order of 

magnitude  1/kn . 

The two-circular graph family is also well-known, with a 
diameter defined as lb(n), but for k-circular graphs this 
diameter definition still remains unknown. Let’s take a look 
at lb(n) for everyone  abovementioned case.  

 
   Oriented two-circular graphs: Lower level for diameter of 
the oriented two-circular graph is defined 

as ( ) 3 2lb n n    . Equation introduces an infinity-graphs 

family where diameters are equal to lb(n) [14]. 
 
   Non-oriented two-circular graphs: The precise lower level 
lb(n) for the diameters of a non-oriented two-circular graph 

is defined as  1 2 1 / 2    n  [21], because:  

(2)   diam(G(n;±lb(n),±(lb(n) + 1)))=lb(n); n 
Besides those mentioned, there are also other different 

two-way circular graph families with diameters equal to 
lb(n). If for the given n the expression 
diam(G(n;±1,±h))=lb(n) is valid for h, then we can say that n 
is a suboptimal number. A set of suboptimal numbers 

consists of infinite elements, but for this specific case 
suboptimal numbers characterization is unknown [22]. 
 
Non-oriented k-circular graphs: The lowest diameter level 
for this graphs’ family is defined by 

equation    
1

! 0.5 1kk n k  . Considering this equation, in 

reality an infinity-graphs family exists, which can achieve 
this diameter [23]. We can prove that there is an infinite 
number of n, for which such numbers as h2,h3,…,hk exists 
where the diameter of the graph G(n;1,h2,…,hk) is lower or 

at most equal to  1/ 1 1/((( 1)! ) 1/ ) 2 / 2k kk c c n k    , for 

any cΖ  0 .  Standard polynomial algorithms can be 

used for diameter calculations in ordinary graphs. Such 
algorithms have exponential time complexity. For general 
examples (for any n and any non-fixed k), circular graph 
diameter calculation is an NP-hard problem [22]. An 
O(log(n)) algorithm for diameter calculation can be found for 
fixed k (k = 2), but the complexities of these problems, 
namely when k > 3, remain an open question [35]. 
 
Searching paths within circular graph 

Let’s take a look at the walk s = (7,0)(0,3)(3,6)(6,8) which 
represents an issue point. The set pair (2, 2) describes a 
walk between points 7 and 8 in the graph G(9;±2,±3), and is 
derived from equation (3) which states that 7+2*2+2*3 is 
equal to 8, summing according to module 9. This means, 
that the walk starts at point 7 and contains two connections 
of length 2, two connections of length 3, and it ends at point 
8. A similar equation can be written down for a general 
case. k-set (x1, x2,…,xk) defines an equivalent class of 
walks between points u and v of the circular graph 
G(n;±h1,…,±hk) only when the following is true: 
 

(3)  

Start Connection Connection
point type 2 type 1

ConnectionEnd Connection
type 1point type 2

8 7 2 3 3 2 (mod 9)
 

 

      

(4)  1 1 2 2     . . .   (mod  )k ku x h x h x h v n      

 
An equivalent class-searching procedure between given 

points u and v within a circular graph is searching for a 
solution to congruent equation (4). This equation gives a 
result (with any u and v) only when gcd(n, h1,…,hk) = 1 is 
true; if such a condition is fulfilled, we obtain an infinite 
number of solutions. The precise solution procedure of 
equation (4) will be described further in the article. We will 
see that Euclid’s algorithm can be used to search for a 
solution in O(log n). The condition for circular graph 

connectedness is that numbers n and h1, i I  do not have 
a common factor. A graph is connected only when there is 
an existing walk between any pair of its points, i.e. only 
when a solution of the equation (4) exists. From equation 
(3) it can be seen that each walk between points u and v is 
also a walk between points 0 and ω = v − u (mod n). This is 
because each k-set (x1,x2…,xk) that is a solution of equation 
(4) is also a solution of equation 0+x1h1+x2h2+…xkhk=v−u 
(mod n). When considering this statement, we could 
translate the problem of the walk searching into the problem 
of searching for all walks between point 0 and all other 
points in the circular graph. 

 Shortest path searching procedure: A path in 
the circular graph is defined as a walk u0 u1 u2…ul, where 
each of these enumerated nodes appears only once [24]. It 
is very important to know among all possible paths as to 
find, which is the shortest and which has the minimal 
number of links. 
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Definition: In each path, the shortest path between nodes u 
and v is that which has the shortest length between u and v. 
More than one possible shortest path can exist between two 
nodes. If the path, which contains |xi| connections of type 
i.sign(xi) (i I+) is the shortest path between u and v, then 
each path, which is a member of the equivalent class 
[x1,x2,…,xk], is also a shorter one. We can prove this by the 
following formalism. 
      

Theorem: Let u and v be arbitrary nodes of a k-circular 
graph and let k-set of integer numbers (x1,x2,… xk) be such 
a solution from equation (3), so that for each other solution 

(y1,y2,…,yk) of this equation | | | |i ii l i l
x y

 
  is valid. 

Then each walk from equivalent class [x1,x2,…,xk] 
represents a path on a circular graph. 
  

Proof: Suppose there exists such a walk s = u0 u1 u2…ul of 
equivalent class [x1, x2,…,xk], which is not a path. Let ui be 
the point of a walk s which has a repetition, and let s' be the 
sub-walk of the walk s, which starts and ends at a point ui. 
For all elements of k-set (z1, z2,…,zk) which represents sub-
walk s', worth |zi| ≤ |xi| and sign(zi) = sign(xi). 
For each i є I+ is valid |xi − zi| ≤ |xi|. Because s' represents a 
cycle, worth ui + z1h1 + …+ zkhk = ui (mod n), respectively 
z1h1 +. . .+zkhk = 0 (mod n). Because of that (x − z) is equal 
to (x1 −z1, x2 −z2,…,xk −zk) and at the same time represents 
a solution to equation (4), and worth 

i i ii I i I
x z x

 
   , but this is contrary to proposition. 

 

Consequence: Let u and v be the given nodes of the 
circular graph G(n;±h1…,±hk) and let the k-set of integer 
numbers be such a solution from equation (3) that for each 
other solution (y1,y2,…,yk) of this equation 

| | | |i ii l i l
x y

 
  will be valid. Each path of the 

equivalent class [x1,x2,…,x] is the possible shortest one 
between nodes u and v. The shortest path searching 
procedure is equivalent to searching for such a solution 
using a congruent equation (3), which minimizes the sum 
between all solutions of this equation, 
 
(5)                    |x1|+|x2|+ …+ |xk|. 
 

The fact that more than one equivalent path with the 
same length exists can be well used in the routing protocol 
development procedure, where the shortest paths are used 
between start and destination nodes. Multiple equivalent 
possible shortest paths mean more possibilities for solving 
eventual problems, which can appear during routing 
procedures (collisions, link loss, path loss, router loss, etc.). 
Furthermore, sometimes more than one equivalent class 
with possible shortest paths between two nodes for a given 
circular graph exists [35]. 
 
Cyclic structure searching method in practice 
The original idea of how to find a circular graph topology in 
a specific network is tightly connected with the existing 
routing algorithms' data where RIP [9], OSPF [25], BGP 
[25], IS-IS [26], RIP2 [9], etc. belong. For better 
understanding, we should first give a short RIP working 
procedure description. RIP belongs to dynamic routing 
protocols family, meaning that it is capable of 
accommodating to dynamic network changes (adding, 
removing network elements, etc.). It is useful for routing 
within LAN or even WAN network segments. It uses the so-
called hops' counter, which prevents traffic cycling in the 
network. However, this is in contradiction to our concept, 
where we are searching for cyclic connections, which are 
the basic elements for circular graph construction. RIP 

every 30 seconds sends full updates of network topology 
through the network. Such updates are a basis for updating 
individual routes, and at the same time every network unit 
(router) knows all other interconnections with other units in 
the network. Different routing protocols update his tables in 
different manners. The most popular way is to send the 
‘hello messages’ (OSPF, for example). In this case, the 
network unit (router) sends a hello message into the 
network, and then waits for possible replies, which arrive 
from all its reachable neighbours. Such principle is 
periodically repeated through the whole network. 
At this point, we can discuss the basis of the proposed 
concept of CIGRP routing protocol algorithm, which must be 
executed in three basic steps.  
In the first step, from the individual network unit routing 
table, irrespective of used main routing algorithm, we can 
construct the connectivity matrix. The CIGRP supervisor 
sub-algorithm performs the routing table analysis, where 
searching for cycles. When the main routing table is 
changed, the connectivity matrix is also changed. 
Compared original RIP algorithm and algorithm CIGRP 
operating mutual interoperable with RIP, the CIGRP 
supervisor algorithm must be executed before the RIP’s 
original ‘reversal poison horizon’ rule is executed. In the 
connectivity matrix, the algorithm searches for circular 
graphs as well their properties (connectivity, symmetry, 
etc.); if cycles do not exist or none of the listed cyclic 
structure properties are not fulfilled, then the algorithm 
returns a classical RIP’s spanning tree graph [8].  
In the second step, the CIGRP supervisor logic determines 
from the connectivity matrix in which regime the router will 
operate. When the supervisor logic finds the cycles and the 
definitions for cyclic structure is fulfilled, the router must 
inform all its neighbours of the temporary routing regime (for 
example, CIGRP mode). In opposite case, when cycles are 
not found in the connectivity matrix, the router must operate 
in one of the existing regimes (for example in RIP regime). 
From this aspect, the information on the operating regime is 
enough for the CIGRP operation mode, and must be 
forwarded to all neighbours. Routing tables are in RIP case 
refreshed every 30 seconds, meaning that the supervisor 
logic will also update the connectivity matrix on each router. 
Such matrix defines a graph topology. In cases, where 
there are no topology changes within the network, 
connectivity matrix and main routing table stay unchanged 
together with the routing regime.  
In the third step, the CIGRP searches for all possible paths 
to a specific destination given by the temporary traffic (see 
section for searching shortest path). The algorithm must 
then calculate the shortest path of all possible paths, stored 
in the PP-Set (Possible Paths Set), where the CIGRP uses 
the mathematical procedure described in section (Shortest 
path searching procedure). 
CIGRP must always operate with another routing protocol 
mechanism and this is also the main point of the proposed 
concept. Mutual operation is very important in cases where 
the circular topology does not exist. From this aspect, 
CIGRP presents only a supplement to other routing 
protocols. No matter which main routing protocol is 
combined with presented CIGRP concept, the main routing 
table of the main routing protocol is a common and 
fundamental part for both. Before routing can start, the 
routers must exchange the messages about the routing 
regime (CIGRP or RIP for example). 
For easier understanding of how such concept works, we 
present the methodology of the first and the second step, 
described above, with two practical examples. 
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Example 1. CIGRP in the first step creates a local copy of 
the main routing table, before the RIP’s redundancy 
removing algorithm is performed. In this case, we keep all 
possible connections. The CIGRP’s algorithm for 
connectivity matrix creation can be then executed, as 
shown in Table 1. 
 
Table 1. Connectivity matrix 

 Node A Node B Node C Node D 
Node A 0 1 0 1 
Node B 1 0 1 0 
Node C 0 1 0 1 
Node D 1 0 1 0 

 
With the help of the connectivity matrix, we can 

construct the circular graph virtual scheme, which presents 
the order of units' connectivity, as presented in Figure 2. In 
Figure 2 we can see that unit 'A' has a connection with unit 
'B' and vice versa, the 'B' has a connection with 'C' and vice 
versa, etc. In the connectivity matrix presented in Table 1 
the circular graph G(4, ±1) exists. For this cyclic structure, 
all definitions are fulfilled, because the presented circular 
graph contains one cycle, and is at the same time 
symmetrical and fully connected. The procedure of 
calculating the shortest path can start at this point. 
 

 
Fig. 2. Circular graph topology G(4, ±1) obtained from connectivity 
matrix 
 
Example 2. For the circular graph structure G(7, ±3) (Figure 
1) the connectivity matrix takes the form presented in Table 
2. The connectivity matrix is obtained from the main routing 
table. 
 
Table 2. Connectivity matrix for circular graph G(7, ±3) 
Node A B C D E F G 

A 0 0 0 1 1 0 0 

B 0 0 0 0 1 1 0 

C 0 0 0 0 0 1 1 

D 1 0 0 0 0 0 1 

E 1 1 0 0 0 0 0 

F 0 1 1 0 0 0 0 

G 0 1 1 1 0 0 0 

 
Proposal of CIGRP integration into the RIP protocol 

At this point, we should answer a few questions, which 
might have occurred to the reader. For example: how does 
the RIP remove the cycles, how does the RIP calculate the 
fastest (not shortest as with CIGRP) path, etc. The answers 
can give a constructive comparison between the RIP 
protocol and the CIGRP concept.  
 
How does the RIP eliminate the cycles? 

The RIP protocol eliminates the cyclic connections 
which present the fundamental part of the CIGRP, as is 
described in the theoretical part in the beginning. Removing 
redundant connections from the RIP routing table is 
ensured by the supervisor RIP sub-algorithm. If from one 
source more than one way leads to a specific destination, 
the sub-algorithm compares the metrics of possible paths, 

and decides which path must be kept in the routing table 
and which must be removed (the CIGRP keeps all possible 
paths). The path with the better metrics must be kept. Such 
an arrangement prevents cycles and redundant connections 
within the network. Nevertheless, additional rules are also 
implemented into the RIP algorithm to prevent cycles. If a 
large part of the network falls out, routing tables are not 
updated fast enough and the metric counter is not effective, 
packets can start a cycling procedure within the network 
(undesirable scenario). Such scenario is prevented with the 
rules split horizon and split poison horizon reversed [27], so 
that packets cannot start the cycling procedure. In many 
cases, the rule split poison horizon reversed is in use, its 
main weakness being an increase of the update table sizes. 
Also, all paths through a specific node must be deleted if 
new messages do not arrive at its destination at a specific 
time (timeout). 

 
How RIP calculates the fastest (not shortest) path? 
RIP protocol fastest path calculation procedure is based on 
the distance vector algorithm. The distance vector contains 
information about direction, distance, and time estimation 
needed to transfer the packets to the specific destination 
node. Each node contains the distance-vectors table, which 
is continuously updated on each node. These tables are 
shared between all neighbors, and because the distance-
vectors table is a sub-part of the main routing table the 
latter is also refreshed and updated. 
 
RIP and CIGRP-RIP modified protocol comparison 

Figure 3 presents the main mutual concept of routing 
regimes. RIP protocol and the proposed CIGRP routing 
protocol regime are described in previous section.  

Figure 3 presents the main idea about how the CIGRP 
segment should be implemented into an existing RIP 
protocol. It would be able to use all the information on 
nodes’ connectivity from the RIP routing table before the 
procedure of removing redundant connections starts. The 
dashed bordered frames present the main blocks of the 
proposed CIGRP algorithm, which are nested between 
RIP’s (shading frames) main blocks. Routing Table 
Manager block belongs to RIP, and presents the basis for 
CIGRP implementation. All presented steps (first step, 
second step, and third step) are described in detail in 
previous section. The main difference between both 
methods is in the beginning phase, where the RIP main 
table local copy procedure starts before RIP rules for 
removing redundant connections executes their algorithms 
(this happens before the rule split poison horizon reversed). 
Such modification ensures that the local routing table copy 
keeps the cyclic connections, which are the basic part of 
CIGRP. Previous section  describes how such mutual 
concept works. The small RIP protocol modification for 
mutual operation is needed only in the beginning of the first 
step and at the end of second step, where RIP must wait for 
CIGRP cyclic structure analysis. Waiting is needed, so that 
CIGRP supervisor logic can decide, which routing table will 
be forwarded to their neighbors and, which routing protocol 
will be in use at the specific moment.  

We can notice that CIGRP concept contains a few steps 
more in comparison to RIP, but nowadays high 
performance processing devices are able to execute one or 
two simpler algorithms so fast that this will not present an 
obstacle in the future. The most important condition for 
mutual operation is the supervisor CIGRP logic which 
defines the operating regime (end of the second step). 

The CIGRP shortest path searching concept is 
presented in section for shortest path calculation. With 
CIGRP introduction, we want to provide the possibility for 
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each node to occupy the shortest path leading to a specific 
destination (RIP always sets the fastest path). At the same 
time, we want to keep the other routing protocols properties 
compatible with the CIGRP concept, such as: 

 Main routing table creation based on routing tables’ 
information exchange with other neighbor routers, 

 reply capability to demands for updating routing 
tables, 

 reliability, and 
 capability of detecting network setting changes. 

 
At this point, a very important question is how to prevent 

packets from cycling in the network, considering that we 
need them for CIGRP. Here many solutions are possible; 
we shall present two of them bellow, which should be 
enough for testing proposes. 
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Fig. 3. CIGRP and RIP routing protocol mutual working 
scenario and RIP upgrading concept with CIGRP modules 
 
Method 1. This is a less suitable solution, where an 
additional frame is added into the packet header, into which 
a unique identification number of each node is entered, 
when a packet goes through the router. The algorithm for 
packet mediation is responsible for header checking and 
comparison of node identification numbers entered into the 
new header. If the algorithm determines that temporary 
packet header already contains the passing router id 
number, it must immediately reject and destroy the packet. 
Such an approach will be useful only in cases where the 
traffic amount is small, because each record in the new 
header increases the packet size, and an additional header 
also means a higher packet length. That is contradicting to 
our thesis (as fast as possible). 
  
Method 2. This is the more suitable solution, where the 
segment of the interior router memory is used for temporary 
packet identification numbers’ storage. Each node 
temporarily remembers the identification of the packets the 
go through specific nodes. How long such identifications are 
stored is defined by parameter TTL. Packets that return to 
an already visited location must be immediately destroyed 

by a supervisor algorithm. This approach also has 
disadvantages (relatively big size memory reservation), but 
for first phase it is a good approach for researching and 
testing purposes. 
 
Conclusion 

With the introduction of a mathematical model, we have 
to provide the reader with an alternative solution which can 
be used in the routing procedure when searching for the 
shortest path within the network. This paper also presents 
the principle of how transfer paths can be presented by a 
mathematical model when network topology is translated 
into circular graph topology. With the help of circular graphs’ 
mathematical laws, we can calculate a graph diameter, 
shortest paths between given nodes, and we are as well 
able to find possible walks through a circular graph, which 
are equivalent to paths in a real network. As we have 
mentioned in the beginning, existing methods [28] are not 
ideal and our method also has advantages, disadvantages 
and limitations. Our intention is to show the reader one of 
the possible methods when searching better paths within 
and between networks, especially in cases when we have 
to deal with time-sensitive and real-time applications. 
At this point, it should be mentioned that the presented 
concept is only the main idea which has not yet been 
implemented and must first be implemented into a 
simulation tool, OPNET Modeler [29, 30, and 31], for 
example,  then tested, estimated and evaluated over 
simulations. After implementation of the presented solution 
into a simulation environment we will be able to better say 
whether such concept is successful or not. For now a 
mathematical proof is enough to start researching in this 
direction. 

The main aim of future research work is testing the 
proposed new routing concept (CIGRP) using simulation 
tool, such as OPNET Modeler. We have to find the proper 
solution comparing Method 1 and Method 2 described in 
above section. Simulation results will tell us if circular graph 
theory is useful on way, described in this paper. 
 

REFERENCES 
 [1] Cisco Systems, “Internetworking Technologies Handbook – 

Routing Basics”, Chapter 5 
 http://www.cisco.com/en/US/docs/internetworking/technology

/handbook/Routing-Basics.pdf  
[2]     Janja Jerebic, Sandi Klavzar, “The strong isometric 

dimension of graphs of diameter two”, April 7, 2003 
         http://www.imfm.si/preprinti/PDF/00876.pdf 
[3]  P. Potocnik, “Delovanje grup in simetrije grafov : doktorska   

disertacija”, Univerza v Ljubljani, Fakulteta za matematiko in 
fiziko. 

[4]  Yuan-Shin Hwang, Joel Saltz, “Identifying Parallelism in 
Programs with Cyclic Graphs”, Parallel Processing, 2000. 
Proceedings. 2000 International Conference, 21-24 Aug. 
2000, Page(s):201 – 208 

[5]  IMRICH Wilfried, KLAVZAR Sandi, “On the complexity of 
recognizing Hamming graphs and related classes of graphs”, 
Eur. j. comb., 1996, let. 17, vol. 2/3, Page(s): 209-221 

[6]  KLAVZAR Sandi, PETKOVSEK Marko, “Graphs with 
nonempty intersection of longest paths”, Ars comb., 1990, 
vol. 29, Page(s): 43-52 

[7]  Spanning tree graph theory, 
 http://www.personal.kent.edu/~rmuhamma/GraphTheory/My

GraphTheory/trees.htm 
[8]  Karl Benkic, Marko Malajner, Peulic Aleksandar, Zarko 

Cucej, “Academic education Wireless Sensor Network: 
AeWSN”, 50th International Symposium ELMAR-2008, 10-12 
September 2008, Zadar, Croatia 

[9] Cisco Systems, “Internetworking Technologies Handbook – 
Routing Information Protocol”, Chapter 47 

 http://users.freenet.am/~file/DownDB/CISCO_PDF/RoutingInf
ormationProtocol_CISCO.pdf  



PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 8/2012                                                      231 

[10] Wikipedia, “Bellman-Ford algorithm”, 
http://en.wikipedia.org/wiki/Bellman-Ford_algorithm 

[11] Charles E. Perkins, Elizabeth M. Royer, “Ad-hoc On-Demand 
Distance Vector Routing”, Second IEEE Workshop on Mobile 
Computer Systems and Applications, New Orleans, 
Louisiana 

[12] Permutation routing in hypercubic networks, Topics in parallel 
computing, CS1221, Feb 25, 1999 

 http://pages.cs.wisc.edu/~tvrdik/10/html/Section10.html  
[13] Wikipedia, “Bijection”, http://en.wikipedia.org/wiki/Bijection 
[14] J. Zerovnik and T. Pisanski (1993), “Computing the diameter 

in multiple-loop networks”, J. Algorithms, 14:226–243. 
[15] Ming T. Liu, Sandra A. Mamrak, Jayshree Ramanathan, “The 

Distributed Double-Loop Computer Network (DDLCN)”, ACM 
Annual Conference/Annual Meeting, Proceedings of the ACM 
1980 annual conference, Pages: 164 – 178, 1980 

[16] G. Babic and T. L. Ming, “A performance study of the 
distributed loop computer network (DCLN)”, in Proc. 
Computer, Networking Symp., (National Bureau of Standards, 
Gaithersburg, MD, December 15, 1977), Pages: 66-76 

[17]    X. D. Hu, F. K. Hwang, “Cutting numbers for the forward loop 
backward hop network”, Discrete Applied Mathematics, 
Volume 48, Issue 2  (January 1994), Pages: 147 – 161 

[18]  ZEROVNIK Janez, “Szeged index of symmetric graphs”, J. 
chem. Inf. comput. sci., 1999, issue. 39, vol.1, Page(s):  77-
80 

[19]    Wikipedia, “Modular arithmetic”,  
   http://en.wikipedia.org/wiki/Modular_arithmetic  
[20]  D. S. Hirschberg and C. K. Wong, “Upper and lower bounds 

for graph-diameter problems with application to record 
allocation”, Journal of Combinatorial Theory, Series 
B,Volume 26, Issue 1 

[21] F.K. Hwang (2003), “A survey on multi-loop networks”,     
Theoretical Computer Science, 299:107–121. 

[22]  J.Y. Cai, G. Havas, B. Mans, A. Nerurkar, J.P. Seifert, and I.  
Shparlinski (1999), “On routing in circulant graphs”, 
Proceedings of the International Conference Computing and 
Combinatorics, COCOON’99, LNCS 1627, str. 360–369, 
Tokyo, Japan, July 26–28. 

[23] J.C. Bermond, F. Comellas, and D.F. Hsu (1995), 
“Distributed loop computer networks: A survey”, Journal of 
Parallel and Distributed Computing, 24:2–10. 

[24] R.J. Wilson and J.J. Watkins (1997), “Uvod v teorijo grafov”, 
DMFA, Ljubljana. 

[25] Cisco Systems, “Routing Protocols (BGP, OSPF), Cisco 
Active Network Abstraction 3.6.6 Technology Support and 
Information Model Reference Manual”, Chapter 3 

[26] Sampo Saaristo, “Implementation of IS-IS Routing Protocol 
for IP versions 4 and 6”, Master of Science Thesis, Tampere 
University of Technology, Institute of Communications 
Engineering, April 2002 

 http://www.atm.tut.fi/faster/ipv6/isis_impl.pdf 
[27] C. Hedrick, “RFC1058 - Routing Information Protocol”, 

Rutgers University, http://www.faqs.org/rfcs/rfc1058.html 
[28] H. Jonathan Chao and Bin Liu (2007), “High Performance 

Switches and Routers”, John Wiley & Sons. 
[29]    Klampfer Sasa, “Networks simmulation in OPNET Modeler”, 

diploma degree thesis, University of Maribor, September 
2007 

[30] Klampfer Sasa, “Expert system for automatic analysis of 
tactical radio network properties”, master degree thesis, 
University of Maribor, June 2009 

[31] J. Mohorko, M. Fras, “Mathematical model of IRIS replication 
mechanism for the simulation of tactical networks”, Computer 
Networks, May 2009, Vol. 53, Issue. 7, Pages: 1125- 1136 

[32] Wikipedia, “NP-Hard problem”, 
http://en.wikipedia.org/wiki/NP-hard  

[33] Sasa Klampfer, Joze Mohorko, Zarko Cucej, “Mathematical 
analysis of routing, based on circular graphs”, Software, 
Telecommunications and Computer Networks, 2008. 
SoftCOM 2008. 16th International Conference, 25-27 Sept. 
2008 Page(s):389 – 393 

[34] Shiou-Wen Lu and Ling-Yang Kung, “Cluster model for 
optimal double-loop connected network”, TENCON '93. 
Proceedings. Computer, Communication, Control and Power 
Engineering, Issue 0,  Part 30000,  19-21 Oct. 1993 
Page(s):162 - 165 vol.3 

[35] Tomaz Dobravec, Usmerjevalni algoritmi v omrezjih s 
topologijo kroznih grafov, Doktorska naloga, Fakulteta za 
racunalnistvo in informatyko, Univerza v Ljubljani, 2004 

 
 
 
Authors: Msc. Sasa Klampfer, Margento Research & Development 
d.o.o., Gosposvetska cesta 84, 2000 Maribor, Slovenia, E-mail: 
sasa.klampfer@margento.com 

 
 

 
 

 


