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Abstract. In this study, EEG signals were classified by using the average powers extracted by means of the rectangle approximation window based 
average power method from the power spectral densities of frequency sub-bands of the signals and two different artificial neural networks (ANNs) 
which are adaptive neuro-fuzzy inference system (ANFIS) and multilayer perceptron neural network (MLPNN). In order to evaluate their 
performances together the proposed approach, four different experiments were implemented by using different mixtures of classes. The experiments 
showed that both classifiers with the proposed approach resulted in satisfactory classification accuracy rates, although the success of MLPNN 
classifier was a little better than the other. 
 
Streszczenie. W artykule zaprezentowano klasyfikacje sygnału EEG przy wykorzystanoiu widma gęstości mocy w podzakresach częstotliwości oraz 
sieci neuronowych: adaptacyjnego system neuro-fuzzy ANFIS oraz wielowarstwowego perceptronu MLPNN. (Klasyfikacja sygnału EEG 
wykorzystująca sieci neuronowe oraz uśrednioną moc w oknie prostokątnym) 
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Introduction 
Epilepsy is a critical neurological disease stemming from 

temporary abnormal discharges of the brain electrical 
activity and leading to uncontrollable convulsions in the 
human body, which affects approximately 50 million people 
worldwide (namely 1–3% of the world’s population). Around 
90% of these people live in developing countries, and about 
three fourths of them could not access to the necessary 
treatment. Therefore, the epilepsy diagnosis and the 
epileptic seizures detection are very important for the 
choice of medicine or surgical treatment [1, 2]. The 
electroencephalography (EEG) signals are generally used 
for the epilepsy diagnosis and the epileptic seizures 
detection because they can provide valuable insight into 
disorders of the brain activity [3]. Although the occurrence 
of epileptic seizures seems unpredictable, the EEG 
recordings measured in seizure-free intervals from the 
epilepsy patients are considered as important components 
for the diagnosis or prediction process [4-7]. Due to the 
complex interconnections between billions of neurons, the 
recorded EEG signals are complex and non-stationary, and 
they also consist of many sinusoidal components of 
different frequencies and very large amounts of data. 
Therefore, the visual analysis of EEG signals is not 
possible, and automated systems are required for the 
analysis of EEG signals [2-5, 8-18]. 

ANNs are widely used in the detection of the class of 
signal in many biomedical signal analyses because they 
have better predictive power than signal analysis 
techniques [9]. Therefore, they provide an important support 
for the medical diagnostic decision. In a classification 
system using ANN, first step is related to the feature 
extraction from the raw data with minimal loss of important 
information by using numerous different methods such as 
frequency domain features, time-frequency features, 
discrete wavelet transform (DWT). In the second step, 
some statistics over the vectors are used to reduce the 
dimensionality of these vectors such as mean, maximum, 
minimum, entropy, and etc. Final step is to apply the feature 
vectors as inputs to ANNs [10]. Not only the architecture of 
ANN and but also the training algorithm play key roles to 
obtain satisfactory results. Although several ANN models 
with different architectures are used as inference system in 
the classification of EEG signals, because of their 
successes in EEG signals classification, multilayer 
perceptron neural network (MLPNN) [3, 4, 7, 10-12, 19-23] 

and adaptive neuro-fuzzy inference system (ANFIS) [1, 5, 9, 
15] are preferred, in general.  

DWT method is the most suitable transform to apply into 
non-stationary signals like EEG signals, and it has been 
widely used for analyzing EEG signals since it shows 
variations in the harmonic amplitude and location in sub-
bands of the signals [4-7, 11-18, 22]. DWT provides high-
frequency resolution at low frequencies and high-time 
resolution at higher frequencies. In order to extract the 
distinguishable features and reduce the dimensionality, 
although several statistics are used over the coefficients of 
sub-bands obtained from EEG signals by DWT, the 
rectangle approximation based average power method is 
one of the best suited methods [24, 25], But a literature 
survey leaves the impression that the average method 
based on rectangle approximation has not been 
investigated in any detail related to the estimation of the 
MLPNN and ANFIS accuracy in the classification of EEG 
signals. Therefore, the aim of this paper is to investigate the 
impact of this method on the MLPNN and ANFIS accuracy 
in the classification of EEG signals.  For this aim, the 
feature vectors of EEG signals are extracted from PSDs of 
sub-bands of the signals by using the rectangle 
approximation window based average power method, and 
they are used as the inputs of MLPNN and ANFIS 
classifiers in different four classification experiments.  
 
Material and Method 
EEG Dataset 

In this paper, the publicly available dataset in reference 
[26] is used. The complete dataset consists of five sets (A, 
B, C, D, and E), and each of them contains 100 single-
channel EEG segments of 23.6 s duration. The sets are 
selected from EEG records after purifying artefacts caused 
by eye and muscle movements. Sets A (eyes open) and B 
(eyes closed) are extra-cranially taken from five healthy 
subjects. Sets C, D, and E are intra-cranially taken from five 
epilepsy patients. While sets D and C contain the EEG 
activity measured in seizure-free intervals from epileptic 
hemisphere and the opposite hemisphere of the brain, 
respectively, set E only contains the seizure activity. All 
EEG segments are recorded with the same 128-channel 
amplifier system, using an average common reference. In 
this study, EEG signals are normalized into the range of [0, 
1] in order to remove extracranial and intracranial amplitude 
differences. Sample EEG segments taken from sets A, B, 
C, D, and E are illustrated in Fig. 1.  
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Fig. 1. Sample EEG segments taken from each set  
 
 Discrete wavelet transform (DWT) 

Discrete wavelet transform (DWT) is an efficient spectral 
analysis technique used for analyzing non-stationary 
signals like EEG signals, and illustrates variations in the 
harmonic amplitude and location. DWT method provides 
high-frequency resolution at low frequencies and high-time 
resolution for higher frequencies with the same time and 
frequency resolution for all frequencies since it uses long 
time windows at low frequencies and short time windows at 
high frequencies, leading to good time-frequency 
localization [14, 15, 27]. 

The DWT decomposes a signal into a set of sub-bands 
through consecutive high-pass and low-pass filtering of the 
time domain signal f (Fig. 2). 
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Fig. 2. Sub-band decomposition of a signal by using DWT 
 

The high-pass filter g is the discrete mother wavelet 
function, while the low-pass filter h is its mirror version. After 
first filtering, the down-sampled signals are called first level 
approximation A1 and detail coefficients D1. Then, 
approximation and detail coefficients of next level are 
obtained by using the approximation coefficient of the 
previous level [10].  
Scaling function )(, xkj  based on low pass filter and 

wavelet function )(, xkj  based on high pass filter are 

defined as  

(1) )2(2)( 2/
, kxhx jj
kj    

(2) )2(2)( 2/
, kxgx jj
kj   

where x=0,1,2,…,M-1, j=0,1,2,…,J-1, k=0,1,2,…,2j-1, J 
equals to log2(M) and M is the length of the signal and 
chosen as 2J. Sampling rate k and the resolution j specify 
the positions and the widths on the x axis of functions, 
respectively [27]. Approximation coefficients )(kAi  and 

detail coefficients )(kDi  in ith level are described as 
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In this study, EEG signals were decomposed into sub-
bands by using the DWT with Daubechies wavelet of order 
2 (db2) because it yields well results in the EEG signals 
classification. The decomposition level was selected as 6 
since it provided the highest success of the classifiers for all 
experiments. Fig. 3 and 4 show the approximate and the 
detailed coefficients of a healthy segment taken from set A 
and an epileptic seizure segment taken from set E, 
respectively. 
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Fig. 3. The approximate and the detailed coefficients of a healthy 
segment taken from set A 
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Fig. 4. The approximate and the detailed coefficients of an epileptic 
seizure segment taken from set E 
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The rectangle approximation window based average 
power  

The power spectral density (PSD) describes how the 
power of the time series data is distributed with frequency, 
and it is a very useful tool for identifying oscillatory signals 
and illustrating their amplitudes and their variations which 
are strong at frequency ranges [24, 25]. The average power 
of a random signal )(tx is distributed over some range of 
frequencies. This distribution Sx(w) over frequency is PSD, 
and it is non negative. The area under Sx(w) is proportional 
to the average power in )(tx , that is, average power in )(tx   

(4) 



 dwwSP x )(

2

1


  

 

where, Sx(w) has units of power/Hz. Mathematically, PSD is 
the Fourier transform of the autocorrelation sequence of the 
time series [24]. The integral of PSD over a given frequency 
band computes the average power in the signal over that 
frequency band. In a classical Fourier analysis, the power of 
a signal can be obtained by integrating PSD, which is the 
square of the Fourier transform’s absolute value [24, 25]: 

(5) 
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In general, it does not exist, and it is not absolutely 
integrable. Therefore, the square of the Fourier transform’s 

absolute value ( 2
)]([ txF ) can not be used as power 

spectrum. The power carried by a defined spectral band 
can be obtained by integrating PSD along this band. 
However, the peaks in this spectrum do not reflect the 
power at a given frequency. The average power method 
based on rectangle approximation window computes the 
average power of a signal via a rectangle approximation of 
the integral of PSD of that signal in a given frequency band, 
and it can be applied only to PSD of a signal. For this aim, 
the truncated process can be used as follows: 
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Truncated process Tx  can be represented as 
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where, )2/( Ttrect  is the 2T long window, and it is used in 

approximating PSD of )(txT as shown in Fig. 5. 

 
Fig. 5. Rectangular window used in approximating PSD of )(txT  

 

Signal )(txT  is absolutely integrable, and, its Fourier 

transform exists for finite T 
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For every value of w, )(wF
Tx  is a random variable. 

According to Parseval’s theorem  
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The left hand side of Equation (9) is the average power 
in )(txT . The average over all )(txT functions can be 

calculated by 
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which leads to 
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As T , the left hand side of Equation (11) is the 
average power of x(t). So, it can be rewritten  
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where, )(wSx  is PSD of the signal x(t), and It has units of 

power/Hz. The average power in the frequency band 
) ,( 21 ww can be calculated by 
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Fig. 6. The average powers of the sub-bands of EEG segments for 
set A and E 
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 In this study, after EEG signals are decomposed into 
sub-bands, and the average powers of sub-bands are 
computed by Equation (14), namely by taking a rectangle 
approximation of the integral of PSD. Fig. 6 shows the 
rectangle approximation window based average powers for 
set A and E. 

As seen in Fig. 6, the dissimilarities of the average 
powers between the segments of different classes (A and 
E) make the classification more easily. 

 
Classification 
 Artificial neural networks (ANNs) are usually classifiers 
composed of large number of simple interconnected 
elements called neurons which perform a simple numerical 
computation task [3]. There are different neural network 
topologies as well as different neurons types. In this paper, 
MLPNN and ANFIS are used in the classification of EEG 
signals. 
 
Multilayer perceptron neural network 
 Multilayer perceptron neural networks (MLPNNs) with 
two or more layers are the most commonly used feed-
forward neural networks due to their fast operation, ease of 
implementation, smaller training set requirements [4, 19]. 
The MLPNN consists of three sequential layers: input, 
hidden and output layers (Fig. 7). The number of neurons of 
input layer is equal to the number of selected features. 
Output layer determines the desired output classes. The 
number of neuron in the output layer depends on the 
number of desired classes. The intermediate layers may be 
added to increase the ability of the network and it mostly is 
useful for nonlinear systems [3]. The hidden layer 
processes and transmits the input information to the output 
layer.  Although MLPNN can have multiple hidden layers, in 
general, the MLPNN with one hidden layer is preferred as 
classifiers. There is no prior knowledge of the number of 
neurons needed in the hidden layer. Large number of 
neurons in the hidden layer can increase the computational 
complexity and processing time. Small amount of neurons 
can lead to the classification errors. 
 

 
Fig. 7. The structure of MLPNN model 

 
 A MLPNN model with insufficient or excessive number 
of neurons in the hidden layer probably leads to the 
problems of poor generalization and over-fitting. There is no 
analytical method for determining the number of neurons in 
the hidden layer. Therefore, it is only found by trial and error 
[3, 4, 18, 21]. In the study, a MLPNN model with one hidden 
layer of 20 hidden neurons was used, its activation function 
was selected hyperbolic tangent function, and it was trained 
by the most widely used Levenberg–Marquardt back-
propagation algorithm in all experiments [4, 18, 21]. In order 
to prevent the MLPNN classifiers from the over-fitting, 10-
fold cross validation was used, which is one of the most 
useful methods for generalizing the results of classifiers [3].  
 

Adaptive neuro-fuzzy inference system 
 The ANFIS is a multilayer feed-forward network which 
takes advantages of the capable of learning of ANNs and 
the capable of fuzzy reasoning to map an input space to an 
output space. ANFIS allows the extraction of fuzzy rules 
from numerical data, adaptively constructs a rule base. Two 
fuzzy if-then rules based on a first order Sugeno fuzzy 
model of the ANFIS [28] can be expressed as  

222222

111111

 then ,B is  and  is  If :  2 

 then ,B is  and  is  If :  1  

ryqxpfyAxRule

ryqxpfyAxRule




 

where x and y are the inputs, Ai and Bi are the fuzzy sets, fi 
are the outputs within the fuzzy region which is specified by 
the fuzzy rule, and parameters pi, qi and ri are the design 
parameters that are determined during the training process. 
The ANFIS architecture implementing these two rules is 
shown in Fig. 8, in which a circle indicates a fixed node, 
whereas a square indicates an adaptive node [9, 28]. 
 

 
Fig. 8.  The structure of ANFIS model 
 
 In the first layer, each node generates fuzzy 
membership grades to which that belongs to the 
appropriate fuzzy sets by using membership functions. The 
outputs of this layer are the fuzzy membership grade of the 
inputs. In the second layer, every node multiplies the 
incoming signals and sends the product out. The output of 
each node represents the firing strength of a rule. In the 
fourth layer, the nodes are adaptive nodes. The output of 
each node in this layer is simply the product of the 
normalized firing strength and a first order polynomial. In 
the fifth layer, there is only one single fixed node. This 
single node computes the overall output by summing all the 
incoming signals.  
 In this study, the ANFIS was trained by the hybrid 
learning algorithm which is highly efficient in training the 
ANFIS [9, 15, 28]. 
 
Validity criterion 

The following statistical measures were used in order to 
see the performances of the classification experiments [4, 
10, 11, 14, 19]. True Positive (TP) is the number of correctly 
classified epilepsy patients, True Negative (TN) is the 
number of correctly classified healthy subjects, False 
Positive (FP) is the number of incorrectly classified epilepsy 
patients, and False Negative (FN) is the number of correctly 
classified healthy subjects.  Sensitivity is the proportion of 
the number of TP decisions to the number of actually 
positive cases (TP+FN). Specificity is the proportion of the 
number of TN decisions to the number of actually negative 
cases (TN+FP). Total correct classification (TCC) is the 
proportion of the number of correctly classified decisions 
(TN+TP) to the number of all cases (TN+FN+TP+FP). 

 
Results and discussion 

EEG signals were decomposed into sub-bands by using 
the DWT with Daubechies wavelet of order 2 (db2) The 
feature vectors were computed by using the average power 
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method based on rectangle approximation window over 
PSDs of each sub-band of EEG segments with 4096 
samples. These features vectors were normalized between 
0 and 1, and they were used as the inputs to MLPNN and 
ANFIS classifiers. Four different experiments were 
implemented by the classifiers in order to illustrate the 
performance of the offered approach as follows: 

 
The experiment of A - E classification: Both MLPNN and 

ANFIS classifiers were trained by the same training dataset 
which was randomly selected 75 segments from set A 
(healthy segments with eyes open) and 75 segments from 
set E (epileptic seizure segments). The trained MLPN and 
ANFIS classifiers were tested by the same testing dataset 
consisting of other 25 segments from set A and 25 
segments from set E. The testing dataset verified the 
accuracy of the trained MLPNN and ANFIS classifiers. In 
this situation, both of them reached to the correct 
classification success of 100%. Table 1 shows the 
confusion matrices of the results of two classifications. 
There is no any misclassification as shown in Table 1. 
 
Table 1. The confusion matrices for A - E classification  

MLPNN ANFIS 
Class A E Class A E 
A 25 0 A 25 0 
E 0 25 E 0 25 

 
 The experiment of ABCD - E classification: Both MLPNN 
and ANFIS classifiers were trained by the same training 
dataset which was randomly selected 300 segments from 
set ABCD (healthy segments and epileptic seizure free 
segments together) and 75 segments from set E (epileptic 
seizure segments). The trained MLPNN and ANFIS 
classifiers were tested by the same testing dataset 
consisting of other 100 segments from set ABCD and 25 
segments from set E. The testing dataset verified the 
accuracy of the trained MLPNN and ANFIS classifiers. Both 
of them reached to the correct classification success of 
97.60%. Table 2 shows the confusion matrices of the 
results of two classifications. Both misclassified only three 
segments as shown in Table 2.  
 
Table 2. The confusion matrices for ABCD - E classification  

MLPNN ANFIS 
Class ABCD E Class ABCD E 
ABCD 97 0 ABCD 97 0 
E 3 25 E 3 25 

 
 The experiment of AB - CD classification: The MLPNN 
and ANFIS classifiers were trained by the same training 
dataset which was randomly selected 150 segments from 
set AB (healthy segments) and 150 segments from set CD 
(epilepsy segments without seizures). The trained MLPNN 
and ANFIS classifiers were tested by the same testing 
dataset consisting of other 50 segments from set AB and 50 
segments from set CD. The MLPNN and ANFIS reached to 
the correct classification success of 100% and 99%, 
respectively. Table 3 shows the confusion matrices of the 
results of two classifications. The MLPNN misclassified any 
segment while the ANFIS misclassified one segment as 
shown in Table 3.  
 
Table 3. The confusion matrices for AB - CD classification  

MLPNN ANFIS 
Class AB CD Class AB CD 
AB 50 0 AB 49 0 
CD 0 50 CD 1 25 

 

 The experiment of AB - CDE classification: The MLPNN 
and ANFIS classifiers were trained by the same training 
dataset which was randomly selected 150 segments from 
set AB (healthy segments) and 225 segments from set CDE 
(epilepsy segments both with and without seizures). The 
trained MLPNN and ANFIS was tested by the same testing 
dataset consisting of other 50 segments from set AB and 75 
segments from set CDE. The MLPNN and ANFIS reached 
to the correct classification success of 97.60% and 98.40%, 
respectively. Table 4 shows the confusion matrices of the 
results of two classifications. The MLPNN and ANFIS 
classifiers totally misclassified only three and two segments, 
respectively.  
 
Table 4. The confusion matrix for AB - CDE classification  

MLPNN ANFIS 
Class AB CDE Class AB CDE 
AB 49 2 AB 49 1 
CDE 1 73 CD 1 74 

 
The classification statistics of MLPNN and ANFIS models 
for four different experiments are given in Table 5 and 6.  
 
Table 5. The classification statistics of MLPNN 

Experiment 
Type 

MLPNN 

TCC (%) 
Specificity 
(%) 

Sensitivity 
(%) 

A - E 100 100 100 
ABCD - E 97.60 97 100 
AB - CD 100 100 100 
AB - CDE 97.60 98 97.33 

 
Table 6. The classification statistics of ANFIS 

Experiment 
Type 

ANFIS 

TCC (%) 
Specificity 
(%) 

Sensitivity 
(%) 

A - E 100 100 100 
ABCD - E 97.60 97 100 
AB - CD 99 98 100 
AB - CDE 98.40 98 98.67 

 
As seen in Table 5 and 6, both classifiers classified ‘healthy’ 
segments and ‘epileptic seizure’ segments with the 
accuracy of 100%. On the other hand, MLPNN classifier 
also classified ‘healthy (AB class)’ segments and ‘epileptic 
seizure free (CD class)’ segments with the accuracy of 
100%. All results showed that both classifiers using the 
proposed approach resulted in satisfactory classification 
accuracy rates, although the success of MLPNN classifier 
was a little better than the other. 
 
Conclusion 
 In this study, EEG signals were classified by using two 
different ANN models and the average powers of PSDs of 
EEG sub-bands.  EEG signals were decomposed into sub-
bands through the DWT. The powers of PSDs of the 
obtained sub-bands for each EEG segment were computed 
by the rectangle approximation window based average 
power method, and then they were used as the inputs of 
MLPNN and ANFIS classifiers. Four different experiments 
were implemented in order to illustrate the performance of 
the proposed approach in the classifications of EEG 
signals. All results showed that both classifiers using the 
proposed approach resulted in satisfactory classification 
accuracy rates, although the success of MLPNN classifier 
was a little better than the other.  
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