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 Data processing algorithm for the Rayleigh fading channels 
 
 

Abstract. The paper considers development of an adaptive algorithm for a measurement system in conditions of Rayleigh fading of signals in radio 
channels. The probability density functions (pdf) of time measurement variances are calculated. For these pdf an approximation of measurement 
noise distributions is proposed and an adaptive Kalman filter for processing transmitted data has been designed. The results of simulations of the 
proposed adaptive algorithm are presented. 
 
Streszczenie. W artykule zaproponowano adaptacyjny algorytm przetwarzania danych w systemach przesyłu informacji w warunkach fluktuacji 
amplitudy o charakterze Rayleigha. Zaproponowano wykorzystanie aproksymacji funkcji gęstości prawdopodobieństwa szumu pomiarowego oraz 
adaptacyjny filtr Kalmana. Przedstawiono wyniki badań symulacyjnych. (Algorytm przetwarzania danych w systemach transmisji w kanale z 
fluktuacjami Rayleigha) 
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The problem formulation 
 In measurement systems with using radio channels a 
pulse position modulation (PPM) is often used because of 
its simplicity and satisfactory performance characteristics 
[1]. In a process of propagation a signal amplitude can 
fluctuate so measurements of pulse time position (delay) 
have different signal-to-noise ratios (SNR). This can result 
in appearance of outliers and makes it difficult to design an 
optimal data processing algorithm. Usually as such an 
algorithm the Kalman filter is used. 
 For optimality of the Kalman filter it is necessary to know 
a current covariance matrix of a measurement noise R(k) 
which is unknown due to amplitude fluctuations in radio 
channel. This uncertainty can be modelled using the 
following approach. 
 Let us consider a discrete-time stochastic equation 
which models an information process in the following form: 
 

(1) (k)w(k)G,k)x(k)1Φ(k)1x(k w  
 
where x(k) is n dimensional state vector (information model),  
Φ(k+1,k) is the transition matrix, w(k) is white Gaussian 
sequence with zero mean and covariance matrix Q(k). 
 The measurement equation can be written as follows: 
 
(2) v(k)H(k)x(k)y(k)   
 
where y(k) is s dimensional observation vector,  H(k) is the 
observation matrix, v(k) is a zero mean noise with a 
covariance matrix R(k) depending on the current value of 
SNR. 
 Under relatively high signal to noise ratio (SNR) the 
Cramer-Rao lower bound (CRLB) is widely used [2] 
because the CRLB can be obtained directly from the Fisher 
information matrix [3]. The time delay error variance for the 
single scalar measurement in this case can be written as 
follows: 
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where q is the signal to noise ratio 
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n  is the noise variance at the output of a receiver, A is the 

signal amplitude and Fe is the signal effective bandwidth [4]. 

If the signal amplitude A has the Rayleigh distribution: 
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then it can be shown that pdf of SNR q is of the following 
form: 
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 Using equation (3) and standard procedures of non-
linear transformations for probability density functions [5] 
one can obtain a pdf for the variance of time delay 
measurement errors in the form: 
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 The probability density functions of the variance R(k) for 

different values 2
n

2
A

2
e /σσFa   are presented in Fig. 1. 

 

 
Fig. 1. Probability density functions R(k) 
 
As it can be seen from the Fig. 1 the probability density 
functions of R(k) have long “tails” which can result in 
appearance of anomalous errors (outliers). 
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A typical example of measurement noise realizations 
corresponding pdf presented in Figs. 1, 4 and 5 is given in 
Fig. 2. 

 

 
Fig. 2. Example of  realization of R(k), v(k) and sqrt(R(k)•v(k)) 
 
 It can be seen the appearance of outliers at the time 
steps 11 and 40. 
 Probability that R/Rmean  exceeds the given value is 
presented in Fig. 3. 
 

 
Fig. 3. Probability of exceeding by R/Rmean given value 
 
 The objective of the paper is designing a sub-optimal 
algorithm of data processing under conditions of fluctuating 
signals and presence of the outliers. 
 
Main Results 
 The procedure of synthesis of the adaptive PPM 
processing algorithm in presence of fluctuating signals can 
be obtained using the nonlinear filtering approach [6]. The 
filter should take into consideration unknown changes of 
R(k) sequence. 
 When the results of observations depend on noise with 
unknown R(k) sequence it is necessary to use a general 
approach for calculating the system estimation. In this case 
the dynamic system state vector estimation can be found as 
a conditional mean of the following form [7]: 
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partial estimates of the state vector (1) that are calculated in 
correspondence with the equations of the Kalman filter. 
 In the measurement equation (2) a noise process  can 
be considered as belonging to a set of Gaussian probability 
density functions of which variances have the pdf described 
by the equation (7). Because the pdf (7) is a continuous 
distribution, for practical purposes it is expedient to 
approximate it by a finite number of M Gaussian 
distributions. 
 In Figs. 4 and 5 there are presented the approximations 
of the function (7) for M=3 and M=10 respectively. For 
another values of M the approximations are presented in 
Appendix. 
 

 
Fig. 4. Approximation of f(R) for M=3 
 

 
Fig. 5. Approximation of f(R) for M=10 
 
 The probability density function of the estimates (8) can 
not be defined exactly because of infinitely growing memory 
for their calculations. That is why for calculating of the 

probability density function of )f(x(k)/Y k
1  it is worthwhile 

to use the Gaussian approximation approach [7]. In such an 
approach the state vector estimates (k/k)x̂ can be 

expressed as the weighted sum of N partial estimates 
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(k/k)xiˆ  corresponding to the certain level of the SNR 

affecting noise variance in the current measurement. Each 
of these partial estimates can be calculated by prediction of 
the estimates obtained at the previous time steps. 
 The a posterior probability of the measurement channel 

state ]/YRP[R(k)p(j/k) k
j 1  depends on the noise 

stochastic characteristics. In general case the Markov chain 
description should be used when there exists time 
correlation between consecutive SNR level. In uncorrelated 
case a posterior probabilities j/kp  [5, 6] can be found with 

constant a priori probabilities (k)q j  as following: 
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 denotes the Gaussian density function of the predicted 
estimates and P(k/k-1) is the corresponding covariance 
matrix. 
Finding a posteriori probabilities of measurement errors and 
incorporating that information in nonlinear filtering method 
should decrease estimation error. 
 Finally the suboptimal estimate (k/k)x̂  can be 

calculated as following: 
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where the filter matrix gain have to be calculated with taking 
into consideration a posteriori probabilities of the 
observation channel state and corresponding partial gains 

(k)K j : 
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 Covariance matrices of errors can be recursively 
computed in a following way: 
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The gain matrix (k)KΣ  is a resultant gain matrix: 
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Simulation results 
 The performance of the proposed method was 
investigated by using 500 Monte Carlo runs. The first-order 
system was simulated. The noises in the observation 
channel (3) was assumed to be described by R(k) 
depending on SNR with  the signal effective bandwidth 
Fe=0.1MHz. Signal amplitude fluctuations was modeled with 
Rayleigh distribution resulting with pdf of R(k) as presented 
in Fig. 4 and 5 and with appearance of outliers. The 
objective of the simulation was to evaluate the proposed 
method algorithm in comparison with traditional Kalman 
filter with average signal power (KFASP) and with optimal 
filter (OF). Estimation in the latter filter is carried out with full 
knowledge of the R(k) sequence values. That is of course 
possible in simulations only, but enables to obtain the lower 
bound of the estimation accuracy. 
 

 
Fig. 6. The RMSE of data processing for the information process 
(SNR = 0 dB,  M = 3) 
 

 
Fig. 7. The RMSE of data processing for the information process 
for the realization (SNR = 0 dB,  M = 3) 
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Fig. 8. The RMSE of data processing for the information process 
(SNR = 10 dB,  M = 5) 
 
 As it can be seen from the figures 6-8 the proposed 
algorithm reveals a considerable performance improvement 
with respect to the usual Kalman filter which is designed for 
the mean value of the signal amplitude and practically is as 
optimal as in a case of exact knowledge of current 
amplitude. In a case of appearance of outliers the 
developed algorithm considerably improves performance 
characteristics of the data processing unit. 
 
Conclusions 
 The paper considers development of an adaptive 
algorithm for telemetric measurement systems in conditions 
of Rayleigh fading in transmitting channel. The probability 
density functions of time-delay variances are calculated and 
approximation is made which make it possible to apply 
nonlinear filtering approach to the synthesis of the adaptive 
processing filter. This filter calculates current a posteriori 
probability of the measurement variance and uses it for 
estimation of the information process. The simulation 
results have revealed a high efficiency of the proposed 
algorithm and a high immunity with respect to the outliers. 
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Appendix: Approximations of the probability density 
function of R(k) for various M 
 

 
Fig. A1. Approximation of f(R) for M=2 
 

 
Fig. A2. Approximation of f(R) for M=5 
 

 
Fig. A3. Approximation of f(R) for M=7 
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