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Modified Dunn’s cluster validity index based on graph theory

Abstract. Clustering methods serve as common tools for efficient data analysis in many fields of science. The essential, yet often neglected, step in
the cluster analysis is validation of the clustering results. This paper presents a novel cluster validity index, which is the modification of the well-known
Dunn’s index. Our proposal is based on its generalization considering the shortest paths between data points in the Gabriel graph. The experiments
show that the proposed index can be successfully applied in the validation of the partitions, even when they contain complex-shaped clusters.

Streszczenie. Klasteryzacja danych jest często wykorzystywanym narzędziem analizy w wielu dziedzinach nauki. Ważny, choć często zaniedbywany
etap klasteryzacji to ocena wyników tego rodzaju analizy. W pracy tej zaprezentowano nowy indeks oceny klastrów, będący modyfikacją indeksu
Dunna. Podejście proponowane w tej pracy jest uogólnieniem, bazującym na poszukiwaniu najkrótszej drogi pomiędzy punktami w grafie Gabriela.
Przeprowadzone eksperymenty potwierdzają, że proponowany indeks może być stosowany do oceny podziałów zbiorów danych, nawet jeśli zawierają
one klastry o skomplikowanych kształtach. (Zmodyfikowany indeks oceny klastrów Dunna oparty na teorii grafów.)
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Introduction
Clustering is a broadly-used data analysis discipline,

fundamental in the field of machine learning, data mining,
and pattern recognition [1]. The challenge for clustering
methods is to partition input data into natural groups of ob-
jects, where a group or a cluster consists of similar objects
and where the objects from different groups are as divergent
as possible [2].

Unfortunately, no such technique for clustering exists
that would cope effectively with any kind of the data, hence
the essential step of a cluster analysis is cluster validation [3].
To assess the output of the clustering procedure, a wealth of
cluster validity indices has been proposed so far [4]. Gener-
ally, they are classified into two groups: internal and exter-
nal cluster validity indices. The internal indices evaluate the
given partition of the data by measuring the compactness and
the separation of the clusters on a basis of some objective
criteria, without any information about how the true partition
should look like. On the contrary, the external indices vali-
date the clustering result with a reference to the partition that
is known to be the ground truth. Usually, the ground truth is
not known beforehand, so in the real world applications, one
should use the internal indices to measure how well do the
obtained partitions fit the input data. The majority of cluster-
ing algorithms require the expected number of clusters K in
the data to be set in advance. Hence multiple runs of an al-
gorithm are executed for different values ofK and an internal
index is employed afterwards to pick out the best partition.

One of the most used internal validity index was pro-
posed by Dunn in 1973 [5] and since then some of its gen-
eralizations have been introduced, using different measures
of the compactness and the separation between the clusters
[6, 7]. In the paper, we propose a new Dunn-like validity
index based on the shortest paths between the data points
considering the Gabriel graph on the data. Our index can
be seen as a modification of generalized Dunn’s index, pro-
posed by Pal and Biswas [6], yet improving its ability to cor-
rectly identify good-quality partitions when highly irregular or
complex-shaped clusters are present in the data. We com-
pare proposed modification with three other relevant indices
while evaluating the partitions of six artificial and two real
datasets that are obtained by the single-linkage algorithm [2]
and the clustering with normalized cuts [8].

Let us first introduce the Gabriel graph and motivate its
usage. Then we present more formally the generalization of
the Dunn’s index using the Gabriel graph and its proposed
modification.

Gabriel graph
One of the most challenging problems for the internal in-

dices is dealing with clusters of non-spherical shapes. There-
fore, new approaches have emerged that are based on the
graph theory concepts and are able to capture the real struc-
ture of the data more efficiently [6, 9]. Pal and Biswas used
three types of graphs to impose a structure on the data,
i.e., minimum spanning tree, relative neighbour graph, and
Gabriel graph. Their results on various datasets show that
the generalized Dunn’s index based on the Gabriel graph [10]
achieves the best performance. Furthermore, connectivity
properties of the Gabriel graph prove to be beneficial in the
terms of the cluster analysis as shown in [11]. These are the
reasons why we adopted the Gabriel graph as the foundation
of our research as well.

Let X = {x1, x2, . . . , xN} be a set of D-dimensional
data points, xi ∈ RD. A graph G = (V,E) is an ordered
pair, where V = {v1, v2, . . . , vN} is a set of vertices and
E = {e1, e2, . . . , eL} is a set of edges between the ver-
tices in V . For each data point xi there is a vertex vi that
is its abstraction in the graph G, thus |X| = |V | = N .
The proximity of the vertices vi, vj ∈ V is defined as the
Euclidean distance between the corresponding pair of data
points, i.e., dE(xi, xj). Let edge eq = {vi, vj} link the ver-
tex vi with the vertex vj and let G be undirected weighted
graph – it means that the direction of an edge is neglected
and that the edges are weighted by the Euclidean distance
between the data points. Thus the weight of the particular
edge eq = {vi, vj} is computed as w(eq) = dE(xi, xj).

The Gabriel graph is a graph, in which there is an edge
eq = {vi, vj}, if

(1) d2
E(xi, xj) < d2

E(xi, xk) + d2
E(xk, xj) ,

∀k : vk ∈ V, k 6= i, k 6= j. In other words, vertices vi and
vj are connected, if there does not exist any other vertex vk,
such that its corresponding data point xk would fall into the
D-dimensional hypersphere with diameter dE(xi, xj) and its
centre in xi + (xj − xi)/2. Fig. 1a) illustrates this notion with
an example of three data points.

In order to compute the Gabriel graph with a greedy
algorithm, we have to compute dE , which has a single-
pass time complexity of O(D), and evaluate the condition
in Eq. (1) for all the triplets of the data points. So, the overall
time complexity of creating the Gabriel graph is O(D ·N3).
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Fig. 1. a) A construction of the Gabriel graph on three data points.
Solid line represents an edge between two vertices. b) The Eu-
clidean distance dE (dashed line) and the shortest distance dS in
the Gabriel graph (solid line highlighted with a contour) between the
points xi and xj

Dunn’s index and its generalization
Suppose we have partitioned dataset X into K clusters

Ci and have obtained the partition πK = {C1, C2, . . . CK},
such that X =

⋃K
i=1 Ci and Ci ∩ Cj = ∅, i 6= j, Ci 6= ∅.

The Dunn’s validity index [5] of the partition πK is computed
as

(2) DN(πK) =
min1≤i≤K{min1≤j≤K{dist(Ci, Cj)}}

max1≤k≤K{diam(Ck)}
,

where

diam(Ci) = max
xm,xn∈Ci

{dE(xm, xn)} and(3)

dist(Ci, Cj) = min
xm∈Ci, xn∈Cj

i6=j

{dE(xm, xn)} .(4)

High value of DN(πK) indicates compact and well sepa-
rated clusters in the partition πK , thus we may compute par-
titions for different number of clusters K, or for any other pa-
rameter of the clustering algorithm, and consider the partition
that maximizes the Dunn’s index as the optimal solution.

To calculate the DN(πK) we firstly have to compute the
distances between all the data points. The between-point dis-
tances are then used to calculate the diameter of the cluster
in Eq. (3) and the distance between clusters in Eq. (4). There
are altogether N(N − 1)/2 pairs of points, so the computa-
tion of the dE distances requiresO(D ·N2) time. The Eq. (2)
itself requiresO(K2) time, so the complexity of Dunn’s index
is O(D ·N2 +K2) and, considering that in our experiments
K ≤ d

√
Ne, it reduces to O(D ·N2).

However, Pal and Bezdek argue that such definitions of
the inter-cluster diameter and the between-cluster distance
are too sensitive to noisy data points and are also inconve-
nient for the validation of non-spherical clusters [7]. As the
answer, some indices, enhanced via various types of graphs,
were provided; one of these indices uses the concept of the
Gabriel graph and in this paper we refer to it as the general-
ized Dunn’s index [6]. The main idea about the generalization
is to represent data points xi ∈ X with vertices vi ∈ V in
the Gabriel graph and to use the redefinition of the cluster
diameter and the between-cluster distance. Pal and Biswas
defined the diameter of the cluster Ci in the following way

(5) diamG(Ci) = max
1≤q≤|Ei|

{eq} , eq ∈ Ei ,

whereEi denotes the set of edges in the Gabriel graph, such

that every edge eq ∈ Ei connects a pair of vertices that both
belong to the cluster Ci. Furthermore, they defined the dis-
tance between clusters Ci and Cj as the distance between
the cluster centres

(6) distG(Ci, Cj) = dE(µ(Ci), µ(Cj)) ,

where µ(Ci) denotes the mean value of all the data points in
the cluster Ci. The generalized Dunn’s index of the partition
πK is calculated in a very similar way as the original Dunn’s
index

(7)

DNG(πK) =
min1≤i≤K{min1≤j≤K{distG(Ci, Cj)}}

max1≤k≤K{diamG(Ck)}
,

where the higher value of DNG indicates the better partition.
To find the optimal partition πK , we maximize DNG(πK) with
respect to K. Authors demonstrated a good performance
of the DNG index for both the structural or chain-like clus-
ters and the spherical clusters. They also argued that their
proposed index is more resistant to the noise, although this
hypothesis is not explicitly proven in the paper [6].

The DNG index is more expensive to compute than the
DN index due to the construction of the Gabriel graph, which
takes O(D ·N3) time. Considering that there is at most 3N
edges in the Gabriel graph [11], Eq. (5) can be computed
in O(N) time for all the clusters. The computation of the
distances between all the pairs of clusters requires additional
O(D ·K2) time, thus it all sums up to O(D ·N3 +D ·K2 +

N). Provided that in the experiments K ≤ d
√
Ne, it finally

reduces to the complexity of O(D ·N3).

The proposed modified Dunn’s index
Motivated by promising results of the generalized Dunn’s

index, we introduce its improvement as yet another modifi-
cation of the way in which the diameter of cluster and the
distance between clusters are computed.

The main idea of the proposed approach is to define the
distance between a pair of data points in the terms of the
shortest path between them in the Gabriel graph. In order to
formalize the proposed distance, let us first introduce some
essential definitions. Let G = (V,E) be the Gabriel graph
built on the dataset X . A path p between the vertices vi
and vj is a sequence of vertices, such that there is an edge
between each of the two successive vertices. A path with no
repeated vertices is called a simple path and the length lp
of the simple path p equals the number of edges on p. With
epr , r = 1, . . . , lp we denote an edge on a path p. Suppose
there are P possible paths between a pair of vertices vi, vj ∈
V . We propose that the distance between the data points
xi and xj is defined as the sum of edge weights along the
shortest path between the vertices vi and vj

(8) dS(xi, xj) = min
1≤p≤P


lp∑
r=1

w(epr)

 ,

where w(epr) is the weight of the edge on the path p between
the vertices vi and vj and it equals dE(xi, xj). The differ-
ence between the distances, i.e., dE and dS between the pair
of data points xi and xj is depicted in Fig. 1b), where solid
lines represent existing edges in the Gabriel graph. In this
simple case, dS(xi, xj) = dE(xi, xk) + dE(xk, xj). To find
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the shortest paths between all pairs of vertices in V , we em-
ploy a well-known Johnson’s algorithm, which can be com-
puted inO(N2 logN+N2) time assuming that |E| = O(N)
[12].

Now, the definitions of the cluster diameter in Eq. (3) and
the between-clusters distance in Eq. (4) are altered slightly
by a substitution of the Euclidean distance dE(·, ·) with the
distance dS(·, ·)

diamS(Ci) = max
xm,xn∈Ci

{dS(xm, xn)} and(9)

distS(Ci, Cj) = min
xm∈Ci, xn∈Cj

i6=j

{dS(xm, xn)} .(10)

In the Gabriel graph, there always exists a path between
any of two vertices (for proof, see [11]), so dS(·, ·) is a non-
negative real number for all the pairs of the data in X . We
can now define the modified Dunn’s index as

(11)

DNS(πK) =
min1≤i≤K{min1≤j≤K{distS(Ci, Cj)}}

max1≤k≤K{diamS(Ck)}
.

Its behaviour when validating the partition πK is exactly the
same as with the DN or the DNG index – the larger the value
of DNS(πK), the better the partition πK is considered to be.
Thus, the maximum diameter of the clusters in the partition
πK should be minimized and the minimum distance between
any of two clusters should be maximized in order to optimize
the DNS index.

When analysing the time complexity of the DNS index,
we consider three computational steps. Firstly, the Gabriel
graph is built in O(D · N3) time. Secondly, Johnson’s algo-
rithm is applied, which takesO(N2 logN+N2) time. Finally,
Eq. (11) requires O(K2) time. Hence, the complexity of the
DNS index becomes O(D · N3 + N2 logN + N2 + K2),
which asymptotically equalsO(D ·N3). The time complexity
of the DNS index is therefore higher than that of the DN in-
dex (O(D ·N2)) and grows as fast as that of the DNG index
(O(D ·N3)).

The reader should note that the proposed variant of the
Dunn’s index (DNS) is also a generalization of the original
Dunn’s index (DN), but for the sake of clarity we refer to it as
the modified Dunn’s index to avoid a confusion with the DNG
index.

Experimental evaluation
We experimentally demonstrate the performance of the

proposed index DNS using the following protocol. We chose
six artificial datasets, i.e., wave, ring, moon, flag, spiral,
and halfring, and two real benchmark datasets, i.e., iris
and wine. The first four datasets are available at [13], the
datasets spiral and halfring are obtained from [14],
whereas iris and wine are from the UCI repository [15].
Due to the fact that all the used datasets were synthetically
generated or annotated by experts, we actually know the true
partitions (cluster labels) and the expected number of clus-
ters, denoted with KT . See Table 1 for the detailed descrip-
tion of the datasets and Fig. 2 for the plots of the artificial
ones. Duplicate data points were removed in the preprocess
step.

To partition the datasets, two clustering algorithms were
employed: the hierarchical single-linkage (SL) algorithm [2]
and the normalized cuts (NC) algorithm [8]. Both algo-
rithms require the expected number of clustersK to be given
as an input parameter. The algorithms were executed for

Table 1. Datasets used in the experiments, containing N points in D
dimensions. The number of clusters KT is a man-given ground truth

dataset N D KT

wave 287 2 2
ring 800 2 2
moon 514 2 4
flag 640 2 3
spiral 200 2 2
halfring 400 2 2
iris 150 4 3
wine 178 13 3

K = 2, . . . , d
√
Ne, where N is the number of data points,

as in [17]. Additionally, the algorithm NC requires parame-
ter σ to be set in order to transform the distances between
the data points to the similarities. In all experiments we used
the following heuristic σ = 0.05 ·maxxi,xj∈X dE(xi, xj), as
recommended by the authors of the NC algorithm.

Let Π denote the set of the obtained partitions of a
particular dataset using one of the clustering algorithms,
Π = {πK ; K = 2, . . . , d

√
Ne}. Each partition was then

validated by the proposed index DNS and three other rele-
vant validity indices: the Dunn’s index (DN), the generalized
Dunn’s index (DNG), and the index of connectedness (Conn)
[9]. The latter evaluates the degree to which neighbouring
data points have been placed in the same cluster. It is de-
fined as

Conn(πK) =

N∑
i=1

 L∑
j=1

ci,nni(j)

 ,(12)

ci,nni(j) =

{
1
j if @Ck : xi, nni(j) ∈ Ck
0 otherwise

,(13)

where nni(j) is the jth nearest neighbour of the data point xi,
and L is a parameter determining the number of neighbours
that contribute to the index Conn. We followed the procedure
in [16] and set the parameter L to a value of 5 for all the ex-
periments. Minimum value of Conn(πK) indicates the optimal
partition with respect to the number of clusters K.

Following the classical methodology for evaluating the
cluster validity indices, every index makes a guess about the
best partition considering the set of partitions Π on a given
dataset. The best partition π∗K predicted by the cluster valid-
ity index CVI(πK) is the partition, such that

(14) πK∗ = arg max
πK∈Π

{CVI(πK)} ,

where K∗ is the number of clusters in the best partition and
function CVI(πK) represents an arbitrary index that should
be maximized, i.e., DN, DNG, and DNS , whereas the Conn
index should be minimized, so the following is the case

(15) πK∗ = arg min
πK∈Π

{Conn(πK)} .

It is said that the index has made a correct guess, if the
number of clusters K∗ in the selected partition πK∗ equals
the true number of clusters KT , given as the ground truth.
However, Gurrutxaga et al. [17] argue that this methodology
makes an important and sometimes false assumption that
the clustering algorithm works well. In other words, it is ex-
pected that the partition πKT

, which contains the true num-
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Fig. 2. The artificial datasets used in the experiments. The ground
truth partitions are displayed using different shapes and colors

ber of clusters, fits the data better than any other partition
in Π. As this is often not the case, especially it is not true
for the datasets with complex-shaped clusters, an alternative
methodology was proposed using external validity indices to
measure the similarity between the partition πK and the true
partition denoted with πT , which is assumed to be known.
We followed this alternative methodology for the evaluation
of the internal indices, so let us briefly formalize it.

Let eCVI(πi, πj) be an external validity index, called also
a similarity measure, that returns high value, if the partitions
πi and πj are similar and small value, if they are not similar.
According to [17], the most similar partition πsim with respect
to the true partition πT is defined as

(16) πsim = arg max
πK∈Π

{eCVI(πK , πT )} .

We search among all the partitions made by a particular clus-
tering algorithm to find the one, which is the most similar to
the ground truth partition πT . It follows that the internal in-
dex makes a successful guess, if it predicts πsim as the best
partition, i.e., if πK∗ = πsim. This approach is argued to be
more general than the classical methodology and free of any
assumption about the correctness of the used clustering al-
gorithm, which is why we adopted it in the evaluation of the
results.

In our experiments, we used three different external va-
lidity indices to determine the partition πsim: Classification
Accuraccy (CA) [18], Normalized Mutual Information (NMI)

[19], and Variation of Information (VI) [18]. The CA index is
defined as the ratio of correctly clustered data points to all the
data points. In order to calculate CA, the optimal covering, re-
lating maximization of intersection between the partition πK
and true partition πT is considered.

The NMI index is an external measure of cluster quality
based on information theory and is computed as

(17)

NMI(πi, πj) =

∑i
h=1

∑j
l=1Nh,l log

(
N ·Nh,l

Ni
hN

j
l

)
√(∑i

h=1N
i
h log

Ni
h

N

)(∑j
l=1N

j
l log

Nj
l

N

) ,
where i is the number of clusters in the partition πi and j is
the number of clusters in the partition πj . N is the number of
all data points, N i

h is the number of data points in the cluster
Ch ∈ πi, N j

l is the number of data points in the cluster Cl ∈
πj andNh,l is the number of data points that are in the cluster
Ch ∈ πi as well as in the cluster Cl ∈ πj .

Finally, yet another information-theoretic index, the VI in-
dex, is defined as

(18) VI(πi, πj) = H(πi) +H(πj)− 2I(πi;πj) ,

where the entropy of the partition πi is defined as H(πi) =
−
∑
Ch∈πi

p(Ch) log p(Ch) and the mutual information be-
tween the partitions πi, πj is defined as I(πi;πj) =∑
Ch∈πi

∑
Cl∈πj

p(Ch, Cl)
log p(Ch,Cl)
p(Ch)p(Cl)

. The probability
p(Ch) that a randomly chosen data point belongs to the clus-
ter Ch is computed as p(Ch) = Nh/N , where Nh denotes
the number of data points in the cluster Ch and N denotes
the number of all data points in the dataset. Joint proba-
bility of two clusters Ch ∈ πi and Cl ∈ πj is defined as
p(Ch, Cl) = |Ch ∩ Cl|/N .

Results and discussion
Table 2 and Table 3 list the results of the comparison

between four cluster validity indices, Conn, DN, DNG, and
DNS , using three external validity indices, CA, NMI, and
VI together with the information about the true clustering as
the evaluation criteria. The partitions that were validated by
the internal indices were created from eight datasets by the
SL and the NC clustering algorithms. The upper-left part of
the both tables shows the target number of clusters for each
dataset; in the first column there is the true number of clus-
ters KT . It is followed by the number of clusters of the par-
tition πsim (see Eq. (16)) according to CA, NMI, and VI. The
upper-right part of the tables contains the columns with the
guessed number of clusters of the partitions πK∗ that are
considered by the cluster validity indices to be the optimum
(see Eq. (14) and Eq. (15)). The evaluation of the validity
indices’ performance, or better their correctness, can be as-
sessed by counting the number of occasions the particular in-
dex made a successful guess. We call this number the score;
for example, SVI denotes the score of the particular internal
validity index according to the external criterion VI. For each
agreement between the target and the guessed number of
clusters, we increase the score by one. Obviously, the higher
the score, the better the performance of the index becomes.

Let us first take a look at Table 2 that presents the pre-
dicted number of clusters and the scores of the four com-
pared indices when partitioning the datasets via the SL clus-
tering algorithm. The first observation is that the target num-
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Table 2. Results of the experiment on the partitions made by the SL
clustering algorithm. The best scores are put in bold

dataset
target K guessed K

KT KCA KNMI KVI Conn DN DNG DNS
wave 2 2 2 2 2 2 3 2
ring 2 2 2 2 2 2 5 2
moon 4 4 4 4 2 2 5 3
flag 3 3 3 3 2 2 3 3
spiral 2 2 2 2 2 2 4 2
halfring 2 5 5 5 2 5 2 5
iris 3 6 2 2 2 2 2 2
wine 3 2 13 2 2 2 2 2

sc
or

e

SVI 5 6 3 7
SNMI 4 5 2 6
SCA 4 5 2 6
ST 4 3 2 4

Table 3. Results of the experiment on the partitions made by the NC
clustering algorithm. The best scores are put in bold

dataset
target K guessed K

KT KCA KNMI KVI Conn DN DNG DNS
wave 2 2 2 2 2 2 2 2
ring 2 2 2 2 2 2 4 2
moon 4 4 4 4 2 2 4 4
flag 3 3 3 3 2 2 5 3
spiral 2 4 6 6 2 14 14 14
halfring 2 3 3 3 3 11 4 4
iris 3 3 2 2 2 2 2 2
wine 3 3 3 2 2 6 2 2

sc
or

e

SVI 5 3 4 6
SNMI 4 3 3 5
SCA 3 2 2 4
ST 3 2 2 4

ber of clusters determined by the external criteria differs from
KT for datasets halfring, iris, and wine – this is due to
the inability of the SL algorithm to find the perfect partitions,
as defined by the ground truth, of the mentioned datasets
when partitioning the data into the KT clusters. Indeed,
these are the cases where the assumption of the clustering
algorithm’s correctness is not true and is better to compare
the guessed number of clusters with the other values of the
target K rather than with KT . For instance, when the Conn
and DNG indices predicted two clusters in the halfring
dataset, it is considered as a lucky guess, because all of the
three external indices show that the most similar partition to
the true partition is the one with five clusters. However, it is
evident from the both tables that according to the SVI, SNMI,
and SCA, the proposed validity index DNS achieved the best
score. There is a tie between DNS and the Conn index when
the true partition is the considered criterion. Furthermore,
the Conn and the DN index performed quite well, too, with
one or two wrong predictions more than DNS , depends on
which external criterion we select as a reference. It is quite
surprising that the DNG index demonstrated the poorest re-
sults, although it was designed especially for the validation of
complex-shaped, non-spherical clusters [6].

When evaluating the cluster validity indices one should
be aware that different clustering algorithms produce differ-
ent partitions for the same number of clusters, which is usu-
ally given as the input parameter. That is why we repeated
the experiment, employing yet another method, the NC al-
gorithm. The results are presented in Table 3 and we can

say that in general they are quite similar to those in Table 2,
especially when considering the scores in the lower part of
the table. Again, the DNS index performed better than the
others. It is interesting to note that in the case of clustering
the moon dataset with the NC algorithm the indices DNG and
DNS were able to correctly identify the optimum partition with
four clusters, while they were wrong in the case of the SL
algorithm – DNG and DNS predicted five and three clusters
respectively. This is due to the diversity within the partitions
when they are made by different clustering algorithms. Fur-
thermore, the Conn index has been lucky enough to guess
that two is the optimum number of clusters in the dataset
spiral even though the partition with two clusters demon-
strated lower similarity when compared with the ground truth,
than the partitions with four or six clusters. On the contrary,
the Dunn-like indices DN, DNG, and DNS wrongly predicted
that there are 14 clusters in the dataset spiral, which is a
considerably large number. The same is evident also from
the predictions of the DN index in the case of the dataset
halfring. A more detailed inspection of the clustering re-
sults of the NC algorithm revealed that, in contrast to the
SL algorithm, it tends to form compact clusters that are well
balanced regarding the number of data points they contain.
When increasing the number of clusters on the input of the
NC algorithm, the cluster compactness grows as well. So the
diameter of the cluster, as defined by Eq. (3), Eq. (5), and
Eq. (9), decreases, which causes the value of DN, DNG, and
DNS to increase. Therefore, it would be beneficial to con-
sider a way to penalize solutions with high number of clusters
in such cases, which remains a subject of further improve-
ments.

Conclusion
In this paper we proposed a modification of the Dunn’s

cluster validity index that is based on the usage of the Gabriel
graph to represent connections between the data points. Our
contribution relates to the novel definition of the distance be-
tween a pair of data points, which is calculated as the sum of
edge weights on the shortest path between the pair of points,
considering connections in the Gabriel graph. We have ex-
perimentally demonstrated that the novel validity index DNS
performs similar or better than the other three relevant in-
dices when identifying the best partitions of some artificial
and real datasets. We conclude that the proposed index can
be successfully employed in the cluster validation process,
also when the input data consists of complex-shaped clus-
ters. According to the results of the experiments, we con-
sider the presented work as an efficient improvement over
the Dunn’s index and its generalization.

In the future, we plan to conduct additional experiments
on high-dimensional biological data to assess the perfor-
mance of the novel validity index in real-life situations. Fur-
thermore, we will focus on the integration of the proposed
index into the cluster-ensemble framework introduced by
Vega-Pons et al. [16], where the partitions in the ensemble
are weighted by the internal validity indices before they are
merged into the consensus partition.
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