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A Survey on Flexible AC Transmission Systems (FACTS) 
 
 

Abstract. The flexible alternating current transmission system (FACTS), a new technology based on power electronics, proposes an opportunity to 
improve controllability, stability, and power transfer capability of AC transmission systems. This article presents a comprehensive review and 
evaluation of FACTS controllers. This paper provides an extensive analysis on the research and improvements in the power system stability 
development using FACTS controllers. Several technical publications related to FACTS installations have been highlighted and performance 
comparison of different FACTS controllers has been discussed. Moreover, some of the utility experience, real-world installations, and semiconductor 
technology development have been outlined.  
 

Streszczenie. FACTS (elastyczny system transmisji prądu przemiennego) jest nową technologią bazującą na urządzeniach energoelektronicznych 
umożliwiającą poprawę sterowalności, stabilności i możliwości przesyłu energii. Artykuł prezentuje przegląd i ocenę kontrolerów stosowanych w tym 
systemie. Szczególny nacisk położono na porównanie parametrów. (Analiza urządzeń systemu FACTS) 
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1. Introduction  
Most of the problems are associated with the low 

frequency oscillation in interconnected power systems, 
especially in the deregulated paradigm. Small magnitude 
and low frequency oscillation often remained for a long 
time. To provide fast damping for the system and thus 
improve the dynamic performance, a supplementary control 
signal in the excitation system and/or the governor system 
of a generating unit can be used. As the most cost effective 
damping controller, power system stabilizer (PSS) has been 
widely applied to suppress the low frequency oscillation and 
enhance the system dynamic stability. PSSs contribute in 
maintaining reliable performance of the power system 
stability by providing an auxiliary signal to the excitation 
system. Application of PSSs has become the first measure 
to enhance the system damping. In the past two decades, 
the conventional power system stabilizer, i.e. a fixed 
parameters lead–lag compensator, is widely used by power 
system utilities. PSSs have been applied to provide the 
point of improvement of low frequency oscillations damping. 
However, PSSs may harmfully impact voltage profile, may 
effect in leading power factor, and may not be able to hold 
back oscillations resultant from difficult instability, 
particularly those three-phase faults which may happen at 
the generator terminals. So far, most main electric power 
system plants are equipped with PSS in many countries [1-
5]. In some cases, if the use of PSS cannot provide 
sufficient damping for inter-area power swing, Flexible AC 
transmission systems devices (FACTS) damping controllers 
are alternative effective solutions [6-7]. The recent 
advances in power electronics have led to the development 
of the FACTS. FACTS devices are one of the recent 
propositions to alleviate such situations by controlling the 
power flow along the transmission lines and improving 
power oscillations damping. The use of these controllers 
increases the flexibility of the operation by providing more 
options to the power system operators. FACTS are 
designed to overcome the limitations of the present 
mechanically controlled power systems and enhance power 

system stability by using reliable and high-speed electronic 
devices. Generally, the FACTS devices are placed in power 
system to provide fast continuous control of power flow in 
the transmission system by controlling voltages at critical 
buses, by changing the impedance of transmission lines, or 
by controlling the phase angles between the ends of 
transmission lines.  This paper provides a comprehensive 
review and evaluation of FACTS controllers. The literature 
shows an increasing interest in this topic for the last two 
decades, where the enhancement of system stability using 
FACTS controllers has been widely investigated. This paper 
provides an extensive analysis on the research and 
improvements in the power system stability development 
using FACTS controllers. Several technical publications 
related to FACTS installations have been highlighted and 
performance comparison of different FACTS controllers has 
been discussed. Moreover, some of the utility experience, 
real-world installations, and semiconductor technology 
development have been outlined. For the aim of this review, 
a literature overview has been carried out including Scopus 
databases which are the largest abstract and citation 
databases of research literature and quality web sources. 
The survey spans over the last 16 years from 1995 to 2011. 
Fig. 1 statistically illustrates the number of published 
research papers on the subject of the FACTS problem 
during the last 16 years.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Number of papers published in each year on the subject of 
FACTS 
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2. Flexible AC Transmission System (FACTS) 
In spite of the interesting properties provided by PSSs to 

enhance power system damping, they have adverse effect 
on system voltage profile, may result in leading power factor 
operation, and may not be able to maintain system stability, 
especially following a large fault occurring close to the 
generator terminal [8]. This theory and improvements in the 
power electronics area led to a new advance introduced by 
the Electric Power Research Institute in the late 1980 and 
named FACTS. It was an answer for a more efficient use of 
already existing resources in present power systems while 
maintaining and even improving power system security. In 
[9], the author introduced this new concept, initiating a new 
direction in power system research. In 1988, Hingorani [10] 
have initiated the concept of FACTS devices and their 
application. Edris et al. [11] proposed terms and definitions 
for different FACTS controllers. There are two groups for 
recognition of power electronics-based FACTS controllers: 
the first group occupies conventional thyristor-switched 
capacitors and reactors, and quadrature tap-changing 
transformers, the second group occupies gate turn-off 
(GTO) thyristor-switched converters as voltage source 
converters (VSCs). The first group has produced in the 
Thyristor- Controlled Series Capacitor (TCSC), the Static 
VAR Compensator (SVC), and the Thyristor-Controlled 
Phase Shifter (TCPS). The second group has produced in 
the Unified Power Flow Controller (UPFC), the Static 
Synchronous Compensator (STATCOM), the Static 
Synchronous Series Compensator (SSSC) and the Interline 
Power Flow Controller (IPFC). For the aim of this review, a 
literature overview has been carried out including the 
Scopus databases that is the largest abstract and citation 
database of research literature and quality web sources. 
The survey spans over the last 15 years from 1995 to 2010. 
This period has been divided to three sub-periods; 1995–
2000, 2001–2006, and 2007–2011.  
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Statistics for FACTS applications to different power system 
studies 
 

 
Fig.3. Pie chart showing the publication distribution of FACTS 
devices 
 

The number of publications discussing FACTS 
applications to different power system studies has been 
recorded and Fig. 2 shows the results of the survey. Also 
Fig. 3 shows the distribution of publications for FACTS 
devices in 16 years.The results indicate significantly 
increasing in STATCOM and UPFC while the interest in 
SVC and TCSC slightly increase. Generally, both 

generations of FACTS have been applied to different areas 
in power system studies including damping of oscillation in 
power system, optimal power flow, economic power 
dispatch, voltage stability, power system security and power 
quality. Applications of FACTS to power system stability in 
particular have been carried out using same databases. 
Noorozian and Anderson [12] presented the ability of 
FACTS controllers to increase power system stability. In 
[13] was considered the damping torque contributed by 
FACTS devices, where some main aims have been 
analyzed and proved through simulations. 

 

3. First Generation of FACTS Devices 
3.1 Thyristor Controlled Phase Shifters (TCPS) 

The TCPS is one of the potential options of recently 
proposed FACTS devices. Researchers have developed 
different TCPS schemes in the literature [14-28]. Ise et al. 
[14] compared between two different TCPS schemes. 
Compared with other FACTS devices, little attention have 
been paid to TCPS modeling and control. The TCPS control 
problem has been investigated using linear control 
techniques [14-15].  A scheme was used in [15] to study the 
stabilizing effect of TCPSs on inter-area modes of 
oscillations. In [16] was presented simulated annealing (SA) 
algorithm to determine the optimum settings of TCPS lead-
lag controller parameters. Moreover, nonlinear TCPS 
control schemes have been investigated in [17-22]. Wang 
[20-22] proposed a new method to TCPS. These papers 
were proposed a nonlinear coordinated generator excitation 
and TCPS controller to enhance the transient stability of a 
power system. However, because of its difficulties, a little 
research has been devoted to the problem of modeling of a 
TCPS applied for a multi-machine system [23-24]. The 
TCPS was modelled in [23] as node power injections whose 
effects appear as additional bus power injections at internal 
buses of the generator. Another mathematical model was 
reported by Ngan [24] for a Type-B TCPS. In [25] was 
presented a best optimal location of TCPS by using 
congestion management in normal and contingency 
conditions. A TCPS in series with the tie-line was presented 
in [26] that it was possible to damp the system frequency 
and tie-power oscillations by controlling the phase angle of 
TCPS. Furthermore, the TCPS was considered for the 
damping of power swings [27]. In [28] was presented the 
analysis of automatic generation control of a two-area 
interconnected TCPS based hydrothermal system in the 
continuous mode using a fuzzy logic controller under open 
market scenario.  

 
3.2 Thyristor- Controlled Series Capacitor (TCSC) 

Many various techniques have been reviewed in the 
literature relating to investigating the effect of TCSC on 
power system stability. Xu et al. [29] proposed TCSC 
controllers based on output feedback. In [30-31] identified 
the most effective signal in damping inter-area oscillations 
for a wide range of operating conditions using transfer 
function residues. In 1997, a time optimal control strategy 
was developed by Chang and Chow [32-33] for the TCSC 
control for damping inter-area modes in interconnected 
power systems. Therefore, H∞ controllers have been 
proposed [34]. In [35-36] designed an output feedback VSC 
utilizing real and reactive power signals, which are local 
signals. The coordination of the proposed TCSC controller 
with a PSS was investigated [37-38]. Artificial neural 
networks are another form of the proposed self-tuning 
TCSC controllers in the literature [39-40]. Recently, 
heuristic optimization techniques have been implemented to 
search for the optimum TCSC based stabilizer parameters 
for the purpose of enhancing system stability. A GA and 
PSO based approach was developed to solve the 
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optimization problem [41-44], and SA [45] to tune a 
conventional two-stage lead-lag controller for a TCSC. 
Table 1 show the complete list of TCSC installed worldwide 
as of December 2004 [46]. A robust nonlinear co-ordinated 
generator excitation and TCSC controller was proposed to 
enhance the transient stability of power systems [47-48]. Li 
[49] was proposed an impedance control strategy based on 
firing-angle modification feedback, which compared with 
that, based on impedance error modification feedback, 
avoids the firing-angle table search for each modification 
and speeds up the response of low-level control. Since 
many research did on this area [50-51]. Panda [52] 
investigated a systematic procedure for modeling, 
simulation and optimal tuning the parameters of a TCSC 
controller, for the power system stability enhancement.  

 

Table 1 Complete list of TCSC installation 

S.N Year Country Voltage(kV) 

1 1992 USA 230 

2 1993 USA 500 

3 1998 Sweden 400 

4 1999 Brazil 500 

5 2002 China 500 

6 2004 India 400 

7 2004 China 220 

 
3.3 Static VAR Cmpensator (SVC) 

SVC is an electrical device for providing fast-acting 
reactive power compensation on high voltage electricity 
transmission networks. SVCs are part of the FACTS device 
family, regulating voltage and stabilizing the system the 
system. It is known that the SVCs with an auxiliary injection 
of a suitable signal can considerably improve the dynamic 
stability performance of a power system [53-71]. The low 
frequency oscillation damping enhancement via SVC has 
been analyzed [53-55]. Self-tuning and model reference 
adaptive stabilizers for SVC control have been proposed 
and designed [56]. Robust SVC controllers based on H∞, 
structured singular value μ, and quantitative feedback 
theory QFT has been presented to enhance system 
damping [57-58]. Genetic algorithms and fuzzy logic based 
approaches have been proposed for SVC control [59-63]. 
Optimal location of SVC was investigated in many 
researches [64-67]. Messina and Barocio [68] studied the 
nonlinear modal interaction in stressed power systems with 
multiple SVC voltage support. A robust nonlinear 
coordinated generator excitation and SVC controller was 
proposed to enhance the transient stability of power 
systems [69-70]. In [71], a sensitivity model for var dispatch 
was proposed to restore the var reserve of SVC while 
keeping desirable voltage profile and the control capability 
of SVCs was defined by the available control margin, the 
slopes, the reference voltage, the static voltage 
characteristic of the system. 
 

4. Second Generation FACTS Devices 
4.1 Static Compensator (STATCOM) 

A STATCOM is a regulating device used on alternating 
current electricity transmission networks. It is based on a 
power electronics voltage-source converter and can act as 
either a source or sink of reactive AC power to an electricity 
network. If connected to a source of power it can also 
provide active AC power. Application of STATCOM for 
stability improvement has been discussed in the literature 
[72-90]. The effectiveness of the STATCOM to control the 
power system voltage was presented in [73]. In [74] was 
presented a singular value decomposition based approach 
to assess and measure the controllability of the poorly 
damped electromechanical modes by STATCOM different 

control channels. Haque [75] demonstrated by the use of 
energy function the capability of the STATCOM to provide 
additional damping to the low frequency oscillations. The 
STATCOM damping characteristics have been analyzed 
and addressed [76-84] where different approaches to  
STATCOM-based damping controller design have been 
adopted such as loop-shaping [78], pole placement [80], 
multivariable feedback linearization [81, 82], H∞ control [83], 
and intelligent control [84]. Song [85] proposed A control 
scheme for star-connected cascade STATCOMs operating 
under unbalanced conditions. Shah [86] described an 
alternative STATCOM, by connecting a number of gate turn 
off thyristor converters in series on the ac side of the 
system. A novel interface neuro controller was proposed for 
the coordinated reactive power control between a large 
wind farm equipped with doubly fed induction generators 
and a STATCOM [87]. In [88] the control strategy for the 
STATCOM used in utility distribution systems were 
investigated and a novel fuzzy-PI-based direct-output-
voltage control strategy was presented. Liu [89] presented a 
new feedback control strategy for balancing individual dc 
capacitor voltages in a three-phase cascade multilevel 
inverter-based static synchronous compensator. Xiang and 
Han [90] proposed a dynamic model for wind turbine-
generator unit, including the wind-turbine and asynchronous 
induction generator. 
 
4.2 Static Synchronous Series Compensator (SSSC) 

The SSSC is a Series FACT Controller, becomes more 
attractive due to its superior abilities over the impedance-
based series compensation. SSSC is a new series 
compensation equipment of FACTS. According to different 
operating conditions, its operation mode, control 
parameters and control strategy vary, and so the relay 
protection will be influenced inevitably The SSSC has been 
applied to different power system studies to improve the 
system performance [91-97]. There has been some work 
done to utilize the characteristics of the SSSC to enhance 
power system stability [98,99]. Wang [98] investigated the 
damping control function of an SSSC installed in power 
systems. In [99] was investigated the capability of the SSSC 
to control the line flow and to improve the power system 
stability. SSSC have been applied to different areas in 
power system studies including optimal power flow [100], 
damping oscillation [101-102] and optimal location for 
stability power system [103-104]. Vinkovic [105] presented 
a new approach to modelling a SSSC for power-flow 
calculations by applying the Newton-Raphson method. 
Panda presented an evolutionary multi-objective 
optimization approach to design a SSSC-based controller 
[106]. Hooshmand [107] used a SSSC along with a fixed 
capacitor in order to avoid torsional mode instability in a 
series compensated transmission system. In [108], a novel 
control strategy for subsynchronous resonance (SSR) 
mitigation using a SSSC was presented. Pradhanr [109] 
presented an analytical formulation of the frequency-domain 
characteristics of the SSSC. 
 

4.3 Unified power Flow Controller (UPFC) 
The UPFC is one of the most versatile topologies of the 

FACTS family. Researchers have developed different 
UPFC schemes in the literature [110-135]. Makombe and 
Jenkins [110] experimentally proved that a UPFC can 
control the three control parameters. High frequency power 
fluctuations, more than 100 Hz, induced by a UPFC have 
been investigated in [111]. Wang developed two UPFC 
models [112-113] which have been linearized and 
incorporated into the Phillips-Heffron model. A current 
injected UPFC model for improving power system dynamic 
performance was developed by Meng and So [115].  
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Schoder et al. [116] developed a UPFC model that can be 
suited for PST in MATLAB. Mishra et al. [117] and Schoder 
et al. [118] developed a Takagi-Sugeno (TS) type FL 
controller for a UPFC to damp both local and inter-area 
modes of oscillation for a multi-machine system. Dash et al. 
[119] suggested the use of a RBF NN for a UPFC to 
enhance system damping performance. Robust control 
schemes, such as H∞ [120, 121] and singular value analysis 
[122] have been explored. A multi-input-multi-output 
(MIMO) PI controller has been proposed in [123-124]. An 
integrated linear and nonlinear control of a UPFC for 
stability enhancement of a multi-machine system was 
developed [125]. Sawhney [126] presented the application 
of one type of FACTS device, the UPFC to improve the 
transfer capability of a power system. An approach to solve 
first-swing stability problem using UPFC was proposed by 
Gholipour [127]. Fujita et al [128] presented dynamic control 
and performance of a UPFC intended for installation on a 
transmission system consisting of two sets of three-phase 
transmission lines in parallel. Al-Awami [129] investigated 
the use of the supplementary controllers of a UPFC to 
damp low frequency oscillations in a weakly connected 
system. In [130] was analyzed real, reactive power, and 
voltage balance of the UPFC system. Shaheen et al [131] 
proposed a Novel Nonlinear MIMO Predictive Control 
System using Optimal Control Approach to control UPFC.  
Singh et al [132] proposed new sensitivity factors to 
determine the optimal location of UPFC in the power 
systems.  Shayeghi et al [133] presented a novel method 
for the design of output feedback controller for UPFC.  Kang 
[134] presented a study on a small scale single-phase 
UPFC preliminary research on power quality compensating 
schemes of electrical railway. Ilango et al [135] investigated 
the application of multivariable control technique to MIMO 
non-linear problem of a power transmission system with 
UPFC.  
 

4.4 Interline Power Flow Controller (IPFC) 
The latest generation of FACTS devices, namely the 

IPFC, is the combination of multiple series compensators, 
which are very effective in controlling power flows in 
transmission lines. IPFC and the generalized unified power 
flow controller are two innovative configurations of the 
convertible static compensator of FACTS. Gyugyi et al [136] 
presented an IPFC which is a new concept for the 
compensation and effective power flow management of 
multi-line transmission systems. In [137] was presented a 
genetically optimized neuro-fuzzy IPFC for damping modal 
oscillations of power system.  In [138] was reported on the 
results of studies performed to ensure satisfactory dynamic 
performance of the New York electric system with the 
UPFC and IPFC configurations of the Marcy Convertible 
Static Compensator. Wei et al [139] used injected voltage 
sources to directly model an IPFC and impose the rating 
limits in a Newton-Raphson load flow algorithm. Vasquez et 
al [140] investigated the operational analysis and the 
limitations of a GIPFC while interacting with the network. In 
[141-142] was investigates the damping control function of 
an IPFC installed in a power system. Zhang [143] 
presented, direct modeling of the practical series or/and 
shunt operating inequality constraints of the IPFC and the 
GUPFC in power flow calculations. Zhang and Chen [144] 
described a novel power injection model of IPFC for power 
flow analysis. Benysek [145] investigated the use of IPFC, 
which are dc/ac converters linked by common DC terminals, 
in a DG-power system from an economy perspective. 
Padiyar and Prabhu [146] proposed the modelling of IPFC 
with 12-pulse, three-level converters and the SSR. In [147] 
was presented the evaluation of the impact of the IPFC on 
available transfer capability enhancement. Azbe and Mihalic 

[148] proposed the basis for the implementation of such a 
strategy, In order to be able to successfully apply IPFCs for 
power-system transient-stability improvement. Moghadasi 
et al [149] investigated the impact of an IPFC on composite 
system delivery point and overall system reliability indices 
were examined. Parimi et al [150] investigated the use of 
the IPFC based controller in damping of low frequency 
oscillations. The Lyapunov energy-function approach was 
frequently used as a convenient way to control or analyze 
the electric-power system [151]. Bhowmick et al [152] 
proposed an advanced IPFC model to address this issue, 
wherein an existing power system installed with IPFC is 
transformed into an augmented equivalent network without 
any IPFC. Vinkovic and Mihalic [153] presented a new 
approach to modelling an IPFC for power flow calculations 
by applying the Newton-Raphson.  

 

5. FACTS Installation issues 
For the maximum effectiveness of the controllers, the 

selection of installing locations and feedback signals of 
FACTS-based stabilizers must be investigated. On the 
other hand, the robustness of the stabilizers to the 
variations of power system operation conditions is equally 
important factor to be considered. In addition, the 
coordination among different stabilizers is a vital issue to 
avoid the adverse effects. Additionally, performance 
comparison is an important factor that helps in selection of 
a specific FACTS device. 
 
5.1 Location and Feedback Signals 

Mostly, the location of FACTS devices depends on the 
objective of the installation. The optimal location can be 
governed by increasing system loadability [154-156], 
minimizing the total generation cost], and enhancing voltage 
stability [157]. Wang et al. [158] presented two indices for 
selecting the optimal location of PSSs or FACTS-based 
stabilizers. This work has been further developed in [159] 
where a new method independent of the eigensolution to 
identify the optimal locations and feedback signals of 
FACTS-based stabilizers was proposed. Yang et al. [160] 
applied the residue method to the linearized power system 
model to determine the location and the feedback signal of 
TCSC in a multi-machine power system. Kulkarni and 
Padiyar [161] proposed a location index based on circuit 
analogy for the series FACTS controllers. Rosso et al. [162] 
presented a detailed analysis of TCSC control performance 
for improving system stability with different input signals. 
Farsangi et al. [163] presented the minimum singular value, 
the right half plane zeros, the relative gain array to find the 
stabilizing signals of FACTS devices for damping inter-area 
oscillations. Ramirez and Coronado [164] presented a 
technique based on the frequency response to select the 
best location of FACTS devices and the best input control 
signal in order to get the major impact on the damping of 
electromechanical modes of concern. Chaudhuri et al. [165- 
166] demonstrated that the use of global stabilizing signals 
for effective damping of multiple swing modes through 
single FACTS device is one of the potential options worth 
exploring. Fan et al. [167] presented two residue-based 
indices to identify an effective local signal that can be used 
by a TCSC as a supplementary controller to dampen inter-
area oscillations for multiple power system operating 
conditions.  

 
5.2 Coordination between Controllers 

Uncoordinated FACTS-based stabilizers and PSSs 
always cause destabilizing interactions. To advance on the 
whole system performance, many researches were made 
on the coordination between PSSs and FACTS controllers. 
In [168-169] was presented the performance and 
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interactions of PSS, SVC and TCSC. A technique for 
calculating the damping and synchronizing torque 
coefficients induced on generators by FACTS controllers 
based on modal analysis was proposed [170]. the 
interactions between PSSs and FACTS controllers in multi-
machine systems was presented  based on the analysis of 
both the perturbations in induced torque coefficients and the 
shifts in rotor modes resulting from increments in stabilizer 
gains [171]. A new unified Phillips-Heffron model for a 
power system equipped with a SVC, TCSC and TCPS was 
proposed [172-173]. A Nonlinear control method was 
introduced to design a coordinated excitation and TCPS 
controller [174], and a coordinated excitation and UPFC 
controller [175] to increase damping of oscillation. Lee et al. 
[176] presented an observer-based decentralized optimal 
control design of a PSS and a TCSC used to a multi-
machine system. Also Li et al. [177-178] proposed a similar 
method to design a coordinated optimal controller to 
implement multiple TCSCs in a multi-machine system. H∞ 
control scheme has been employed to tune decentralized 
SVC and TCSC controllers using a model-matching 
robustness formulation [179]. Moreover Sanchez-Gasca 
[180] presented a coordinated controller for a TCSC and a 
TCPS using projective control scheme. Pourbeik and 
Gibbard [181] presented a two-stage method for the 
simultaneous coordination of PSSs and FACTS-based lead-
lag controllers. Fang and Ngan [182] changed the problem 
of simultaneously selecting the controller settings of a PSS 
and a MIMO controller of a UPFC into an optimization 
problem. Ramirez et al. [183] investigated a similar advance 
to design a PSS, TCSC and UPFC lead-lag controllers. Lie 
et al. [184] presented the same technique to find the optimal 
settings of coordinated PSS, SVC and TCSC lead-lag 
controllers. Panda and Padhy [185] proposed the 
application of GA for the design of a PSS and a FACTS-
based controller. In [186] power system multi input-multi 
output identification methods that were useful for 
simultaneous coordinated design of PSS and TCSC 
controller were presented. Panda and Patel [187] proposed 
a procedure for modeling and simultaneous tuning of 
parameters of TCSC controller and PSS in a power system 
to damp power system oscillations. A fuzzy controller was 
used [188] to design both FPSS and FFDC in multi machine 
power system for increase of damping the power system 
oscillation.  Fang et al. [189] proposed a nonlinear 
programming model for simultaneously coordinated 
parameters design of PSS and STATCOM stabiliser. A 
modified simplex-simulated annealing algorithm was 
developed for solving the programming model. A multi-
objective evolutionary algorithm based approach to PSS 
and SVC tuning was introduced [190]. A coordinated design 
of robust PSS and SVC damping controller in a multi-
machine power system was investigated [191]. A linearized 
system model and the parameter-constrained nonlinear 
optimization algorithm was proposed in [192].  

 

6. FACTS Technology Implementation & Development 
6.1 FACTS Installations and Utility Experience 

In the starting to appear deregulated power systems, 
FACTS controllers will supply some advantages at existing 
or improved levels of reliability such as balancing the power 
flow in parallel networks over a wide range of operating 
conditions, mitigating inter-area power oscillations, 
alleviating unwanted loop flow and intensification the power-
transfer capacity of existing transmission corridors [193]. In 
1991, a ±80 Mvar STATCOM extended by Kansai Electric 
Power Co. and Mitsubishi Motors was fixed at Inuyama 
Switching Station to improve the stability of a 154 kV 
system [194]. A ±100 Mvar STATCOM was ordered for the 
Tennessee Valley Authority in 1995 [195-196]. The TVA 

STATCOM is the first of its kind, using GTO thyristor valves, 
to be ordered in USA. In 1997, American Electric Power has 
selected its Inez substation in eastern Kentucky for the 
location of the world's first UPFC installation [197-198]. The 
UPFC is comprised of two ±160 MVA GTO thyristor-based 
inverters, this installation is the highest power GTO based 
FACTS device ever installed. EPRI and Siemens also 
developed a ±200 Mvar convertible static compensator, 
which was installed at Marcy 345 kV substation in 2001 to 
provide strong dynamic voltage support and to control the 
power flow. Depending on the transmission control need, 
the installed CSC can provide four control modes where it 
can be controlled to operate as STATCOM, SSSC, UPFC, 
and IPFC [199]. A ±75 Mvar STATCOM developed by 
ALSTOM, the first cascade multilevel-inverter-based 
STATCOM in the world, entered commercial service at 
National Grid Company East Claydon, England in 2001 
[200]. A +133/-41 Mvar STATCOM system has been 
installed at the Vermont Electric Power Company's Essex 
115 kV substations since May 2001, to compensate for 
heavy increases in summertime electric usage [201]. A 
three-level ±100 Mvar STATCOM is installed by San Diego 
Gas & Electric at Talega substation, California in October 
2002, and is to be extended to a Back-To-Back system 
[202]. ABB has installed six STATCOM systems since 
1997; two installations in USA and one installation in 
Sweden, Germany, Finland, and France [203]. A ±250 Kvar 
prototype D-STATCOM was designed and installed for the 
first time [204]. More FACTS installations to improve the 
performance of different power system utilities can be found 
in [205]. A ±50 Mvar STATCOM based on chain circuit 
converter employing IGCTs has been developed 
successfully and has been put into operation [206]. The 
Puerto Rico Electric Power Authority suffered a major 
power plant failure in Palo Seco in late 2006.The network 
planners were facing a severe problem with potential 
voltage stability in the area, and decided that the most 
expedient solution to the problem while the power plant was 
being refurbished was an SVC rated at 0/+90 Mvar [207]. 
Georgia Transmission Corporation commissioned the 
Barrow County SVC with a continuous rating of 0 to +260 
Mvar in June of 2008 [208]. 
 

6.2 FACTS Devices Technology Development 
The technology behind thyristor-based FACTS 

controllers has been present for several decades and is 
therefore considered mature. A relatively new device called 
the Insulated Gate Bipolar Transistor has been developed 
with small gate consumption and small turn-on and turn-off 
times. Larger devices are now becoming available with 
typical ratings on the market being 3.3 kV/1.2 kA (Eupec), 
4.5 kV/2 kA (Fuji), and 5.2 kV/2 kA (ABB) [209, 210]. The 
ratings of IGCT reach 5.5 kV/1.8 kA for reverse conducting 
IGCTs and 4.5 kV/4 kA for asymmetrical IGCTs [211]. 
Currently, typical ratings of IGCTs on the market are 5.5 
kV/2.3 kA (ABB) and 6 kV/6 kA (Mitsubishi) [209]. Injection 
Enhanced Gate Transistor is a newly developed MOS 
device that does not require snubber circuits and it has 
smaller gate power and higher turn-on and turn-off capacity 
compared with GTO. The ratings of IEGT are in the order of 
4.5 kV/1.5 kA [212]. Based on integration of the GTO and 
the power MOSFET, the Emitter Turn-Off (ETO) thyristor is 
presented as a promising semiconductor device for high 
switching frequency and high power operation. The ETO 
has 5 kA snubberless turn off capability and much faster 
switching speed than that of GTO. A modular ETO-based 
1.5 MVA H-bridge converter is used to build a cascaded-
multilevel converter for high power FACTS devices [213, 
215]. A novel approach to distributed FACTS controllers 
based on active variable inductance has been recently 
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proposed to realize cost-effective power flow control [216]. 
The power flow control using distributed FACTS controllers 
can be achieved by introducing a distributed series 
impedance concept which can be further extended to 
realize a distributed static series compensator [217].  

 

7. FACTS Applications to Steady State Power System 
Problems 

 For the sake of completeness of this review, a brief 
overview of the FACTS devices applications to different 
steady state power system problems is presented in this 
section. Fig. 6 show summarizes the impact of FACTS on 
load flow, stability and voltage quality when using different 
devices. Evaluation is based on large number of studies 
and experiences from projects. Specifically, applications of 
FACTS in optimal power flow and deregulated electricity 
market will be reviewed. 
 
7.1 FACTS Applications to Optimal Power Flow 

In the last two decades, researchers developed new 
algorithms for solving the optimal power flow problem 
incorporating various FACTS devices. Generally in power 
flow studies, the thyristor-controlled FACTS devices, such 
as SVC and TCSC are usually modelled as controllable 
impedance [218-220]. However, VSC-based FACTS 
devices, including IPFC and SSSC, shunt devices like 
STATCOM, and combined devices like UPFC, are more 
complex and usually modelled as controllable sources [221-
222]. A new hybrid model for OPF incorporating FACTS 
devices was investigated to overcome the classical optimal 
power flow algorithm where load demands, generation 
outputs, and cost of generation are treated as fuzzy 
variables. An improved GA was presented to solve OPF 
problems in power system with FACTS where TCPS and 
TCSC are used to control power flow [223-224]. In the 
solution process, GA coupled with full AC power flow, 
selects the best regulation to minimize the total generation 
fuel cost and keep the power flows within their secure limits. 
A linear programming -based OPF algorithm was proposed 
for corrective FACTS control to relieve overloads and 
voltage violations caused by system contingencies [225]. 
The optimization objective was chosen to minimize the 
average load ability on highly loaded transmission lines. 
The algorithm is implemented with MATLAB and tested on 
the New England 39-bus system and the WECC 179-bus 
system. In [226] derived analytically the relationship 
between the series voltage injected by the UPFC/IPFC and 
the resulting power flow in the transmission line. This 
relationship was used to design two power flow control 
schemes that are applicable to any series-connected 
FACTS controller with the capability of producing a 
controllable voltage. The presented power flow control 
schemes were applied to a voltage-sourced converter-
based IPFC, and the resulting control performances were 
examined using PSCAD/EMTDC simulation package. 

 
Table 2 Cost of conventional and FACTS controllers 

FACTS Controllers Cost(US $) 
Shunt Capacitor 8/kVar 
Series capacitor 20/kVar 

SVC 40/kVar controlled portions 
TCSC 40/kVar controlled portions 

STATCOM 50/kVar 
UPFC Series Portions 50/kVar through power 
UPFC Shunt Portions 50/kVar controlled 

 

8.  Costs 
As compared to conventional devices, FACTS controllers 
are very expensive. The approximate cost per KVar output 
of various conventional devices and FACTS controllers are 

shown in Table 2. However, the cost per KVar decreases 
for higher capacity of FACTS controllers. The total cost also 
depends on the size of fixed and controlled portion of the 
FACTS controllers. The FACTS equipment cost represent 
only half of the total FACTS project cost. Other costs like 
civil works, installation, commissioning, insurance, 
engineering and project management constitute the other 
half of the FACTS project cost. 
9. Conclusion  

This paper presented an extensive analysis on the 
research and improvements in the power system stability 
development using FACTS devices. The necessary 
features of FACTS controllers and their potential to increase 
system stability investigated. Moreover, some of the utility 
experience, real-world installations, and semiconductor 
technology development have been outlined.The location 
and feedback signals used for design of FACTS-based 
damping controllers were discussed. About two hundred 
research publications have been classified, discussed, and 
appended for a quick reference. For the readers’ 
convenience and broad spectrum, different applications of 
the first and second generations of FACTS devices over the 
last two decades can be reviewed through the annotated 
bibliographies. 
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