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Performance of some novel optimization algorithms 
 
 

Abstract. Three global optimization algorithms are tested against some chosen benchmark tests with known minima. Particle Swarm Optimization 
yields results closest to the sought minima, but is also the slowest algorithm. The hybrid Simplex-Simulated Annealing approach requires fine-tuning 
of its settings in most cases. 
 
Streszczenie. Przetestowano zachowanie trzech algorytmów optymalizacji globalnej wykorzystując wybrane zadania testowe o znanych minimach 
globalnych. Optymalizacja metodą roju cząstek daje rezultaty najbardziej zbliżone do poszukiwanych, lecz równocześnie jest to najwolniejszy 
algorytm z rozpatrywanych. Podejście hybrydowe simpleks - symulowane wyżarzanie wymaga dostrajania swoich parametrów w większości 
przypadków. (Ocena wybranych nowoczesnych algorytmów optymalizacji). 
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Introduction 

Optimization problems arise in many problems in 
electrical engineering, e.g. parameter estimation for 
hysteresis models [1-3], design of electric machines [4,5] 
and other devices [6-8] etc. Classical methods used for 
solving highly nonlinear problems are sometimes slow 
convergent or not robust enough, therefore much attention 
is paid to alternative approaches based e.g. on artificial 
intelligence methods. 

In order to compare the performance of optimization 
algorithms, a number of benchmark problems with known 
solutions has been proposed [9-12]. A similar approach is 
applied in cryptography to test the strength of developed 
ciphers. The aim of the present paper is to provide a 
comparison of some novel optimization algorithms. 
Particular attention is paid to the algorithm, which mimicks a 
social-behavioural collective action, i.e. Particle Swarm 
Optimization [12-14]. Collective interaction between similar 
units is well recognized e.g. in ferromagnetism [15], where it 
has been transformed into a very successful concept of 
“effective field” [16]. This century-old idea has become the 
cornerstone of many contemporary descriptions of 
magnetization phenomenon. An interesting association of 
the idea of collective interaction with the concepts advanced 
by such renowned scientists and philosophers as Isaak 
Newton, Thomas Hobbes, Adam Smith and John Locke, as 
well as by the 20th century economists, has been presented 
in Ref. [12].  

Another interesting association between contemporary 
condensed matter physics and optimization theory is behind 
the Simulated Annealing concept [17]. In statistical 
mechanics the behaviour of large aggregates of atoms 
subject to cooling is highly influenced by the cooling rate. 
Slow decrease of sample temperature results in smearing 
out the structural disorder and favours the approach to an 
equillibrium state corresponding to the global energy 
minimum. On the other hand, rapid cooling (quenching) 
yields defects and glass-like intrusions inside the material. It 
leads to the final state with a higher energy level than 
previously considered. This phenomenon is particularly well 
known to technologists working on amorphous and 
nanocrystalline alloys [18]. Simulated Annealing method 
developed by N. Metropolis et al. [19] works on a similar 
principle. Starting from a given point x0 in the search space, 
a new candidate point x1 is chosen according to some 
criterion and the energy (cost) values are calculated for 
both points. If 0)()( 01  xExEE  then the point x1 is 

accepted and becomes the starting point for the next 
iteration, otherwise the new point is accepted, but 
conditionally, only if rTE  )/exp( , where r is a random 

number from the unit interval and T is a parameter called 
temperature. Initially the temperature value is kept high, but 
it is decreased during successive iterations. In the paper an 
implementation of the hybrid approach, which combines the 
Simulated Annealing algorithm with the nonlinear simplex 
method, is used [20,21]. 

The third optimization method considered in the paper 
(Shuffled Complex Evolution Approach) is based on a 
synthesis of four concepts that have proved to be 
successful in global optimization i.e. combination of 
probabilistic and deterministic approaches, clustering, 
systematic evolution of a complex of points spanning the 
space in the direction of global improvement and 
competitive evolution [20,22].  

 

Selected benchmark problems 
As pointed out in the previous section, there exists a 

number of benchmark tasks with known solutions used for 
testing the robustness of optimization algorithms. Those 
may be either unimodal (having just one global minimum) or 
multimodal. We have chosen some less known benchmark 
functions from the set prepared by R. Oldehuis [11]. The 
Figures presented in the paper were obtained using the 
ezimage tool developed by this author. 

The first considered benchmark was the unimodal 
Matyas function, given with the relationship  
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The function has a global minimum equal to zero at 
   0,0, 21 xx . The shape of the Matyas function is shown 

in Figure 1. White point denotes the global minimum. 
 
 
 
 
 
 
 
 
 

Fig. 1. Matyas function 
Fig.1. The shape of the Matyas function 

 
The second unimodal function under consideration was 

the Levi13 function. Its formula was a bit more complex: 
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The function has a global minimum equal to zero at 
   1,1, 21 xx . The function is shown in Figure 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Levi13 function 
 
As the example of a multimodal function we have 

chosen the Himmelblau function, depicted in Figure 3.  
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 3. Himmelblau function (white points denote global minima) 
 
Its formula is given with the following relationship: 
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The function has four equal minima equal to zero for the 
following coordinates:  
   3;2, 21 xx ;  

   3,131312 805118;,2, 21 xx ;

   3,283186- ,779310;3, 21 xx ; 

  21, xx  1,848126- ,584428;3 .  

The locations of all the minima can be found analytically, 
but the expressions are long and complicated. 

 
Modelling results 
We have used the Matlab codes developed by B. Donckels 
[20] for all tests. The calling convention for all algorithms 
was quite similar. In the first attempt we have kept the 
default settings for the optimization routines, as proposed 
by the author. These settings were chosen arbitrarily basing 
on experience of different researchers, but they may be 
easily fine-tuned for specific needs, using scripts provided 
by the code developer. Settings common for all algorithms 
are given in Table 1 below. 
  
Table 1. Some settings common for all considered algorithms 

Setting Value 
Maximum number of iterations 2500 
Maximum number of function evaluations 2500 
Maximum difference between the coordinates 
of the vertices 

10-3

 

The lower and upper bounds for the variables in the 
search space were preset for each considered benchmark 
function. Within the search space a vector of guess 
solutions (actually a two dimensional matrix), consisting of  
100 elements, was randomly generated and saved for 
further use. The codes provided by B. Donckels require 
some guess solution values for initialization. The same 
vectors of guess solutions were used for all optimization 
routines working on a specific benchmark function in order 
to avoid side-effects. The point coordinates and the cost 
values, obtained with the optimization routines, were saved 
in appropriate Matlab matrices. On the basis of carried out 
tests and the analysis of profiler codes a general conclusion 
about the performance of the algorithms may be drawn. 
Particle Swarm Optimization (with contraction factor 
introduced to avoid premature convergence [14]) is the 
slowest routine, however it yields most repeatitive results, 
which are moreover closest to the known solution. Shuffled 
Complex Evolution approach is a good compromise in 
terms of speed and accuracy. The hybrid Simplex-
Simulated Annealing algorithm is most probably the fastest 
one in the considered group, but in some cases fails to find 
the optimal solutions for its default settings. This effect is 
clearly visible in 3D representation of solutions obtained for 
the Levi13 function, depicted in Figure 4.  

  
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
In nine cases the differences between the expected 

value 0 and final fitness values differed more than 0,25 (in 
the Figure only five such points are visible, because in 
some cases the solutions have converged to the same 
points). In the worst case the final value returned by the 
algorithm was 0,4412 and the minimum was found at 
(1,6603; 0,9937), which by any means cannot be 
satisfactory. We suspected that this effect might be due to 
some non-optimal algorithm settings, e.g. too fast cooling 
rate. Therefore we carried out additional tests of the 
algorithm with altered settings. An overall improvement of 
the algorithm performance was obtained after modification 
of a number of its settings: COOL_RATE = 1,1 (the default 
value is 10, which means faster convergence), 
MIN_COOLING_FACTOR = 0,95 instead of 0,9, 
MAX_ITER_TEMP_FIRST and MAX_ITER_TEMP_LAST 
increased up to 100 (to be compared to 50, which is the 
default value; the meaning of these parameters is the 
number of iterations in the preliminary and the final (pure 
simplex) loop, respectively); MAX_ITER_TEMP was 
increased from 10 to 50 (this is the number of iterations in 
the remaining temperature loop). TEMP_START was set to 
100 (originally it was predetermined by the code itself). As it 
can be easily seen, most of the introduced modifications 
were aimed at increasing the number of iterations within the 
algorithm loops. The corresponding increase in computation 
time was about the factor of two, yet the speed of the code 

 
Fig. 4. Solutions of SIMPSA test run on Levi13 function 
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was satisfactory (about a minute for the whole 100-element 
batch on a modern Intel i5 machine running 64-bit Matlab 
7.10 on Windows 7. For the modified settings and the same 
set of guess points the algorithm has stuck just once at a 
point with fitness value above 0,25 (0,2884 @ (1,3257; 
0,7743)). The number of iterations in that case was 522 and 
the number of function evaluations was 928. In 22 cases 
the final fitness values were of the order of 0,1, but 
otherwise they were of the order 10-5 – 10-4 (the found 
points were quite close to the expected global minimum). 
 An interesting case was the multimodal Himmelblau 
function. All algorithms were able to locate the global 
minima; as usual PSO was the slowest, but most accurate, 
whereas SIMPSA revealed the opposite behaviour. In just 
one case SIMPSA did not approach one of the global 
minima by less than 0,1 (the value was 0,1026 for the point 
(3,025; 1,9134), which, however, remained not too far from 
the first minimum (3;2)).  

 

Conclusions 
Performance of three novel global optimization algorithms 
was tested using chosen benchmark tests with known 
solutions. The algorithms had to be called several times due 
to their stochastic operation mode. In all cases the code 
implementing Particle Swarm Optimization (with constriction 
factor to prevent premature convergence) gave the 
solutions closest to the sought minima. However, the 
preferred procedure is the Shuffled Complex Evolution 
algorithm, which combines accuracy sufficient for 
engineering purposes with increased speed. The default 
settings for the algorithms were satisfactory, however in 
some cases it was necessary to fine-tune them by hand (cf. 
“No free lunch theorem” [23]). This was particularly visible 
for the SIMPSA algorithm, which has failed to converge 
several times even for the simple matyas function.  

Generally speaking, all the Matlab codes developed by 
B. Donckels [20] are useful for engineering applications. 
The implementations are fast and flexible enough to include 
them as part of more complex calculation routines.  

 

Appendix – Matlab calling procedure 
The functions to be minimized have to be called several 
times due to stochastic nature of the optimization 
procedures. The Matlab function arrayfun is useful for 
handling batch function calls. 
fun = @(x1,x2) PSO(‘matyas’, [x1,x2], [-10,-10], [10,10]; 
numpoints = 100; 
m1 = -10 + 20.*rand(numpoints,1); 
m2 = -10 + 20.*rand(numpoints,1); 
% the function ‘matyas’ is optimized using PSO in two  
% dimensional space <-10;10> x <-10;10> consisting of 100 
% points, whose coordinates are randomly generated 
[xcoord, fvalue, exitflag, out] = arrayfun(fm, m1, m2, 
‘UniformOutput’, false);  
The results of individual function calls are stored as cell 
arrays consisting of appropriate structures. These may be 
post-processed using cell2mat or cell2struct procedures. 
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