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Abstract: The method for solving non-linear 3D magnetostatics problems is presented in the paper. It is based on the iterative version  of the 
fundamental solutions method. A dozen of numerical tests performed on a simple model system provided grounds to evaluate the method as 
effective and correct. 
 
Streszczenie:. W pracy zaprezentowano metodę rozwiązywania nieliniowych 3D zagadnień magnetostatyki opartą na iteracyjnej wersji metody 
rozwiązań fundamentalnych. Na prostym przykładzie modelowym przeprowadzono szereg testów numerycznych, które wstępnie pozwalają ocenić ją 
jako poprawną i skuteczną. (Zastosowanie metody rozwiązań fundamentalnych w nieliniowych trójwymiarowych zagadnieniach 
elektromagnetyzmu). 
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Introduction  
 Domain methods, such as finite elements method (FEM) 
or finite differences method (FDM), are most commonly 
used while solving field problems. Boundary methods, 
‘competitive’ to them, such as the boundary elements 
method (BEM), are less popular in computation despite 
their advantageous features like simpler discretization, 
smaller size of numerical models, a possibility to analyse 
systems containing unlimited domains, easier solution error 
estimation, or its analytical form itself, to name a few. It 
might be so as the boundary methods are considered to be 
less universal due to being inapplicable to solving non-
linear problems. Essentially, it seems right as all the 
boundary methods are based on superposition principle, 
which holds solely in linear problems. Nevertheless, certain 
concepts indicating their applicability to selected types of 
non-linear problems are known (see eg [1]). 

The authors of the paper have long been involved in 
research and development of the fundamental solutions 
method (FSM) [2, 3, 4, 5], one of the methods from Treffz 
group, rarely applied to boundary electrodynamics 
problems. When compared to other boundary methods, its 
features such as lack of complicated and intricate analytical 
calculations, or lack of numerical computations to determine 
singular integrals (such as BEM) must be find attractive; it is 
also easier to choose base functions for the approximation 
sum as it simply requires defining a set of certain points 
called fundamental solutions singularities.  

Moreover, by applying iterative FSM big equations 
systems to solve are avoided, computational time is 
definitely reduced, and concurrently to the iteration process 
the solution error can be controlled, which allows to stop 
computations upon achieving the required accuracy. 

The paper is aimed at implementing iterative FSM to 
nonlinear problems analysis, with a model magnetostatics 
problem set as the testing example. Numerical test runs 
have been performed to estimate efficiency of the method 
and check feasibility of further research into its wider 
applying to more complex problems in electromagnetics.  
 
General formulation of the problem  
 The problem under consideration deals with 
magnetostatic field analysis for the system presented in 
Figure 1, where I domain represents an solid of nonlinear 
magnetic properties ((H)), immersed in an unlimited 
II domain with a constant magnetic permeability 0. The 

excitation sources of the magnetic field are direct currents 
of known density distribution J, flowing in III domain. 
Under such assumption, within I, II domains free from 
current, magnetic field intensity H can be expressed as a 
scalar magnetic potential  defined with gradH . As 

Gauss law provides for the magnetic field this potential shall 
satisfy the equations 
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Since at the boundary surface S (Fig. 1) continuity is 
required both for the tangent component of the magnetic 
field intensity and the normal component of magnetic 
induction, the potential function shall also satisfy the 
following boundary conditions: 
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Fig. 1. The analysed system 
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Thus, the problem of computing the field in domains  
and  has been practically reduced to finding two scalar 
functions  and , which incorporate the excitation field 
and satisfy the equations (2) and (4) as well as the 
conditions (5) and (6).  
 
The solution method  

The problem defined above can be solved iteratively, 
with  = const at the first step, and subsequently a linear 
problem defined by equations (2), (4) and the boundary 
conditions (5), (6), whereas the right side of the equation (4) 
is determined from the field distribution computed at the 
previous step, which is treated as a function of space 
coordinates [1]. Hence, at the nth iteration step a linear 
Poisson equation is solved, with the source function 
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The equations (2) and (4) are solved in the next iteration 

steps by means of fundamental solutions method (FSM) 
[2,3,4,5]. The sought potential functions within the domains 
 and  are expressed as a superposition of the potential 

0 representing the excitation field, the potential 
)(n

f related to f(n) function and a linear combination of the 

fundamental solutions to the Laplace equation, namely 
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K
mp - coefficients of the approximation sum. 

The singular points mQ of the fundamental 

solutions K
mF are defined beyond the domain, concerned 

with the specific solution, i.e. IIΩQ m for I
mF  and 

IΩQ m for II
mF . The selection method is arbitrary, though 

it is recommended to set them neither too distant to, nor too 
far from the boundary surface S, and distribute them around 
as regularly as possible.  
Determining the original field potential 0 is a separate 
issue. For sources, where current lines are closed it can be 
determined from a general relationship [6,7] 
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- the solid angle at which A surface is seen; it is set upon 
an infinitely narrow current stream passing Q point of the 
 domain, the remaining items denoted as in the Figure 1. 
It should be stressed that the method might prove 

divergent. It means some uncertainty exists whether the 
solution obtained in the next iteration step is burdened with 
a smaller error than the previous one. Thus, it is vital to be 
able to estimate properly the solution error at each iteration. 
The procedure presented further, based on the iterative 
FSM facilitates such estimation. 
 
Computing coefficients of the approximation sum  
By applying the best approximation method [8] all the 

K
mp coefficients in (8) for the specific set of mQ  singular 

points can be optimally computed, i.e. the boundary error of 
the solution can be minimised. For the considered case the 
error has been determined as  
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w1, w2 – weight coefficients, fitted experimentally to optimise 
convergence  
max, Hmax – maximum values for the potential and 
magnetic field intensity at the boundary surface S 
1, 2 – determined at the surface S boundary error 
functions (5) and (6), respectively. 
 
Still, the results of many numerical experiments [3,4,5] 
indicate that it is quicker and significantly simpler to set up a 
iteration procedure where at each iteration step only one 

K
mp  coefficient for each of system domains. In such cases 

error minimalisation conditions (13) 
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result in a system of 2nd order linear equations, which can 
be solved explicitly  
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That eliminates time consuming numerical solving of big 
equation systems, which significantly reduces real 
computation time; resulting longer approximation sums in 
(8) are fortunately practically immaterial.  

The rudimentary approximation theorem on existence 
and uniqueness of the linear approximation solution [8] it 
can be proven [2,3] that at the mth  iteration step 
 

(20)  )1()(  mm   
 

which means that the procedure converges for the linear 
problem. Additionally, it provides opportunities to solution 
error control in the course of iteration process, which may 
be automatically terminated once the required accuracy has 
been achieved (see remarks at the end f the previous 
section). 
 

The algorithm  
The proposed procedure, as described herein, includes 

two iterative loops, namely an internal one aimed at 
obtaining linear problem solution within the set accuracy, 
and the external one whose subsequent steps modify the 
right side function of the equation (4) in dependence from 
the magnetic field distribution computed at the preceding 
step. The simplified algorithm of the procedure is illustrated 
in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. The method’s algorithm 
 

Test 
To estimate the correctness and efficiency of the presented 
method a model system for determining the magnetostatic 
field has been considered (see Figure 3). The original 
source of the field is the direct current i flowing in a circular 
coil, which surrounds a spherical solid of non-linear 
magnetic properties.  
The assumed H) dependence was that of ST35 steel 
(based on [9]) – see Figure 4. 
The original field potential calculated from (11) and (12) is 
expressed as 
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Fig. 3. Model system under analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. (H) dependence (steel ST35, [9]) 

The proposed algorithm was converted into a Fortran77 
computer routine and then several numerical test runs were 
performed. Singular points for the fundamental Qm solution 
are selected randomly at each iteration step by means of 
pseudo-random number generator, within the user defined 
distance from the boundary surface S. Exemplary results 
are presented in diagrams in Figures 5-9. They concern the 
system with the following parameters: i = 0.5 kA,  
Ru = 0.3 m, Rk = 0.1 m.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 5. Computed magnetic potential distribution for the y = 0 plane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Computed distribution Hx for the y = 0 plane 
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Fig. 7. Computed distribution Hz for the y = 0 plane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Computed distribution for the radial component of the 
magnetic field intensity for the y = 0 plane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 9. Computed distribution for the zenith component of the 
magnetic field intensity for the y = 0 plane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Boundary error of the solution (see (13), (14)) at 
subsequent iteration steps 

Summary  
The method for solving non-linear 3D magnetostatics 

problems is presented in the paper. It is based on the 
iterative version  of the fundamental solutions method. A 
dozen of numerical tests performed on a simple model 
system provided grounds to evaluate the method as 
effective and correct. It was found that the method 
divergence rate majorly depends on the original field and 
the relative magnetic permeability (the greater mean values 
these parameters gain within  domain, the slower the 
iteration process divergence is). Though the obtained 
results are found prospective, the complete evaluation of its 
applicability require further research into more complex 
systems modelling real technical systems. 
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