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Abstract. The paper presents the parallelisation of sequential (single-processor) finite element simulations with the use of domain decomposition 
methods. These domain decomposition methods are the Schur complement method and the Finite Element Tearing and Interconnecting (FETI) 
method. The execution time and speedup of these parallel finite element methods have been compared to each other and to the sequential one. 
 
Streszczenie.  W artykule zaprezentowano paralelizację sekwencyjnych (jednoprocesorowych) symulacji metodą elementów skończonych z 
wykorzystaniem metod dekompozycji obszaru. Metody te to metoda uzupełnienia Schura oraz metoda FETI (Finite Element Tearing and 
Interconnecting). Czas obliczeń i przyspieszenie paralelizowanych metod elementów skończonych zostały porównae między sobą oraz z procesem 
sekwencyjnym. (Porównanie metod dekompozycji obszaru dla rozwiązywania równań różniczkowych cząstkowych eliptycznych z 
niestrukturalną siatką) 
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Introduction 
Different applications of domain decomposition method 

[1, 2] have a long history in computational science. The 
reason for employing the substructuring technique was the 
small memory of computers. To solve large scale problems, 
a domain has been divided into subdomains that fit into the 
computer memory. However, the computer memory grows, 
the demand for solution of large real life problems is always 
ahead of computer capabilities. The large scale 
computations and simulations performed with finite element 
method (FEM) [3, 4] often require very long computation 
time. While limited progress can be reached with 
improvement of numerical algorithms, a radical time 
reduction can be made with multiprocessor computation. In 
order to perform finite element analysis a computer with 
parallel processors, computations should be distributed 
across processors. 

The finite element method [3, 4] is an important 
technique for the solution of a wide range of problems in 
science and engineering. In electromagnetic computation, it 
is based on the weak formulation of the partial differential 
equations, which can be obtained by Maxwell’s equations 
and the weighted residual method [3]. The most time 
consuming part of finite element computations is the 
solution of the large sparse system of equations. Therefore, 
the solution of a large system of equations must be 
parallelized in order to speedup the numerical computations 
[1]. 

Two non-overlapping domain decomposition methods, 
the Schur complement method [1, 2, 5] and the Finite 
Element Tearing and Interconnecting (FETI) method [2, 6, 
7, 8] have been used after the partition of the finite element 
mesh into subregions or also called subdomains, and it 
reduces the large mass matrix into smaller but 
interconnecting parts. The independent subdomains, and 
the assembling of these equation systems can be handled 
by the independent processors of a supercomputer or by 

the independent computers of a computer grid, i.e. in a 
parallel way. Furthermore, after assembling, the system of 
linear equations has been solved in a parallel way, too. 

The paper presents a parallel approach for the solution 
of two dimensional linear elliptic partial differential equation 
problems by parallel finite element method. These problems 
are case studies to show the steps of the Schur 
complement method [1, 2, 5], and of the Finite Element 
Tearing and Interconnecting method [2, 6, 7, 8] with parallel 
finite element technique. The comparison focused on the 
time, speedup and numerical behaviour of Schur method 
and FETI method. 

 

Parallel Finite Element Method with Domain 
Decomposition 

The parallel finite element based numerical analysis on 
supercomputers or on clusters of PCs (Personal 
Computers) need the efficient partitioning of the finite 
element mesh. This is the first and the most important step 
of parallelization with the use of domain decomposition 
methods.  

The efficient mesh partitioning is necessary for the 
distributed computation, because each subdomain should 
contain approximately the same number of node points, i.e. 
the load balance of processors is nearly equal. When the 
parallel system includes p processors, usually the problem 
domain is partitioned into p subdomains. The number of 
subdomain elements assigned to each processors and the 
number of common elements assigned to different 
processors are minimized. These are important because of 
the load balance of the computations and the minimum 
communication among the processors. 

Many domain decomposition or graph-partitioning 
algorithms can be found in the literature [1, 9]. Gmsh [10] 
combined with METIS algorithm [8] has been used for the 
discretization of the domain of problem and for the mesh 
partitioning. The parallel finite element program has been 
implemented in a MATLAB script [11]. 
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The main idea of domain decomposition method is to 
divide the domain Ω into several subdomains in which the 
unknown potentials could be calculated simultaneously, i.e. 
parallel. 

The general form of a linear algebraic problem arising 
from the discretization of a static field problem defined on 
the domain Ω can be written as [1, 2, 12] 
 

(1)  , bKx   

where nnR K  is the symmetric positive definite matrix, 
nRb  on the right hand side of the equations represents 

the excitation, and nRx  contains the unknown nodal 
potentials. Here n is a number of unknowns. 

 
 

Fig.1. Partitioned two-dimensional problem 
 

Schur Complement Method 
The Schur complement method [1, 2, 5] was started to 

use many decades ago, and nowadays also a very popular 
non-overlapping domain decomposition technique among 
engineers. 

After the mesh partitioning, equations in (1) has been 
split into particular blocks. In the case of Fig. 1, the jth 
processor contains blocks ( 61 ,,j ) [2, 5] 
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where jjK is the symmetric positive definite submatrix of 

the jth subdomain, jb  is the vector of right hand side 

defined inside the subdomain. The j  is the interface 

boundary index of the jth subdomain. The submatrix 
jjK  

contains the nodal value of jth subdomain, which connect to 
the interface boundary nodes of that region. The 

jjK  of 

the upper part of the matrix is the transpose of jjK  of 

lower part of the matrix. The 
jjK and 

jb expresses the 

coupling of the interface unknowns. 
Each subdomain will be allocated to an independent 

processor, because the submatrix jjK  with the 

jj jj  KK   ,  and the right-hand side jb  are independent, 

i.e. these can be handled in a parallel way. Only the 
jjK  

and 
jb  are not independent, these submatrices and 

vectores are stored on the distributed memories. The K  

and b  are the sum of 
jjK  and 

jb , where j is the 

index of sub-domains. 

After some algebraic manipulations, the unknowns in 

x  can be calculated by the solution of [2, 5] 
 

(3) 






 













S

j

S

j

N

j
jjjj

N

j
jjjj

1

1

1

1 bKKbxKKKK  j
 

 

where the term inside the bracket is the so called Schur 
complement, and SN  is the number of subdomain. The 

original system of equations contains n unknowns, while the 
reduced system (3) contains only the unknowns of x . 

This reduction of unknowns is an important feature of the 
Schur complement method. Equation (3) is also called the 
coarse grid problem, because only the unknowns of interior 
boundaries are used. 

The inverse of the matrix jjK  is needed to compute the 

corresponding subdomain of the solution vector. However, 
matrix jjK  never inverted explicitly in practical computing, 

because it is very time consuming. Instead of an inverse 
matrix, the incomplete LU-factorization [12] has been used 
here. 

The unknowns of all the other subdomains jx  can be 

calculated simultaneously [2, 5] i.e. 
 

(4)  , 
j  xKbxK jjjjj   

 

where 61 ,,j  in the case of Fig. 1. 
 

 
Fig.2. The three sub-solution of the partitioned problem 
 

The possibility of parallel computation can be decreased 
the computation time. The assembly of the submatrices can 
be performed parallel by independent processors. However, 
for the solution of equation (3) use the submatrices from the 
independent processors. After obtaining x , it must be 

sent back to the independent processors to calculate the 
subsolutions by equation (4). If the problem is large enough, 
the data exchange is a small amount while solving the 
problem. 

In this paper, the problems are quiet small examples, 
this is why a direct solver, the parallel forward-backward 
algorithm [1] has been used to solve the equation in (4). 

The six subsolutions can be calculated as it illustrated in 
Fig. 2. This figure shows the potential distribution and the 
equipotential lines of the single-phase transformer. 

 
Finite Element Tearing and Interconnecting 

The Finite Element Tearing and Interconnecting (FETI) 
method was introduced by Farhat and Roux in reference 
[6]. In the last decade, the FETI method [2, 6, 7, 8] has 
seemed as one of the most powerful and the most popular 
solvers for numerical computation. 
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If domain Ω is partitioned into a set of SN  disconnected 

subdomains (Fig. 1), the FETI method consists in replacing 
equation in (1) with the equivalent system of substructure 
equations (where SNj ,,1 ) [2, 6, 7, 8] 

(5)  , TλBbxK jjjj   

(6)  , 



SN

j
jj

1

0xB  

where jK  is the jth subdomain mass matrix, jb  is the jth 

vectors of right-hand side, λ  is a vector of Lagrange 
multipliers [2, 6] introduced for enforcing the constraint (6) 
on the subdomain interface boundary j , and jB  is a 

signed (  ) Boolean mapping matrix, which used to express 
the compatibility condition at subdomain interface j . The 

superscript T denotes the transpose. 
Usually, the partitioned problem may contain Sf NN   

floating subdomain, where matrices jK  from being 

singular. The floating subdomain is a subdomain without 
enough Dirichlet boundary conditions. In Fig. 1, the 
Subdomain 5 is a floating subdomain, because the outer 
boundary is not Dirichlet boundary condition ( D ), but 

Neumann boundary condition ( N ). In this case fN  of 

local Neumann problems (Eq. (6)) are ill-posed. To 
guarantee the solvability of these problems, we require that 
[2, 6] 
 

(7)     , KerT
jjj K λBb  

 

and compute the solution of equation in (5) as [2, 6, 7, 8] 
 

(8)    , T
jjjjjj αRλBbKx    

 

where 
jK  is a pseudo-inverse of jK ,  jj KR Ker  is 

the null space [12] of jK , and jα  is the set of amplitudes 

that specifies the contribution of the null space jR  to the 

solution jx . Instead of a pseudo-inverse of matrix, the 

Moore-Penrose matrix inverse [12] has been used here. 
The introduction of the jα  is compensated by the 

additional equations resulting from (4) [2, 6, 7, 8] 
 

(9)    . TT 0λBbR  jjj  
 

Substituting equation (8) into the equation (6) and 
exploiting the solvability condition (9) leads after some 
algebraic manipulations to the following FETI interface 
problem [2, 6, 7, 8] 
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where [2, 6, 7, 8] 
 

(11)  

 

.

.     

, 

,     

, 

T

11

1

11

1

T

SS

S

SS

S

N
T
N

T

N

j
jjj

NNI

N

j
jjjI

RbRbe

bKBd

RBRBG

BKBF

























 

In order to solve equation in (10) for the Lagrange 
multiplier vector λ , the following splitting of  λ  is performed 
[2, 6, 7, 8] 

(12)   , 0 λQPλλ   
 

where   eQGGQGλ
1

0


 I
T
II , which is a particular 

solution of eλG T
I , and  QP  is a projection operator [2], 

which is for any matrix Q ,   0QPG T
I  by 

    T1T
IIIIQ GQGGQGIP


 . In this paper, dFλ  I  

and  IFQ  choosen, based on reference [8]. After some 

algebraic manipulations equation in (12) leads to the 
following equation 

 

(13)   , αGdFλ II    
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The interface problem (10) is the best solved by an 
iterative algorithm [2, 6, 7, 8]. However, in this paper a 
direct solver has been used by the above mentioned 
parameters. 

 

Test Problems 
Two test problems have been used for the comparison, 

which can be seen in Fig. 3. The first benchmark is a single-
phase transformer, and the second one is a parallel-plate 
capacitor [5]. 

  
 

Fig.3. The test problems. 
 

The choosen test problems are static problems, where 
the partial differential equations are elliptic type [3, 5]. The 
2D problem is dicretized by triangle elements and linear 
nodal shape functions have been used for the test 
problems. These problems are enough to simulate the 
quarter of the problem because of symmetry. 

 

Results and Discussion 
The computations have been carried out on a massively 

parallel computer (SUN Fire X2250). This computer works 
with a shared memory topology. The parallel programs 
have been implemented under the operating system Linux. 

Table 1, Table 2 and Table 3 presents the comparison 
of domain decomposition methods at three different mesh 
sizes. The 23110 and 45967 number of unknowns (DOF) 
problems are the static magnetic field problem with. the 
single-phase transformer. The 37661 DOF problem is the 
electrostatic problem with the parallel-plate capacitor. In the 
tables, NP is the number of processors and NDOF is the 
number of unknowns on each sub-domain.  

The times of sequential computation of 23110, 37661 
and 45967 problems are 31.272 sec, 87.9131 sec and 
118.5621 sec, respectively.  

The times in the brackets at FETI method is the 
computation time of the full problem with a same mesh size 
as the quarter one. If the full problem is calculated, the 
problem does not contain floating sub-domain, because the 
outer boundaries are Dirichlet boundary condition. 
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Fig. 4 shows the speedup tests of the function of the 
number of the applied processors. The speedup of 
problems clearly show, if the size of full problem increased 
the speedup of FETI method (FETI-full) is also increased. 
However, this is not true at FETI-quarter, i.e. when the 
problem contains floating subdomain. The speedup of 
Schur method is increased when the number of processors 
are increased. 
 
Table 1. Performance comparison of Schur and FETI methods at 
23100 DOF. 

NP NDOF 
Schur FETI 

Time [sec] Time [sec] 
2 11633 31.8679 19.1888 
3 7804 14.4887 11.2188 
4 5853 9.1514 7.7721 
5 4703 6.5774 6.7625 
6 3930 5.4711 5.8121 
7 3389 4.8756 16.4467 (4.8933) 
8 2965 4.5103 14.6080 (5.3837) 

 
Table 2. Performance comparison of Schur and FETI methods at 
37661 DOF. 

NP NDOF 
Schur FETI 

Time [sec] Time [sec] 
2 19014 83.3859 48.7743 
3 12713 43.0057 26.3409 
4 9613 29.8087 18.0200 
5 7671 23.8673 14.3775 
6 6402 16.2492 57.7801 (12.2929) 
7 5490 13.8095 47.0895 (9.6963) 
8 4865 10.8847 43.2187 (9.4909) 

 
Table 3. Performance comparison of Schur and FETI methods at 
45967 DOF. 

NP NDOF 
Schur FETI 

Time [sec] Time [sec] 
2 23091 106.1977 68.2186 
3 15429 68.8367 37.9652 
4 11577 50.3323 23.6598 
5 9290 32.5471 18.2715 
6 7752 24.6692 16.3725 
7 6671 20.9650 72.7768 (13.8424) 
8 5847 17.6793 56.9673 (11.9318) 

 

 
Fig.4. Speedup tests of static field problems. 
 

Conclusion 
One electrostatic and one static magnetic field problems 

have been solved by parallel finite element method. The 
parallel finite element program with Schur complement 
method and finite element tearing and interconnecting 
method works properly, because the time is decreased 
when the number of processors is increased. The speedup 
achieved over 7-fold and 5-fold speedup by 8 processors at 
the Schur and the FETI methods, respectively. 

The aim of future research is to solve more complex, 
large two dimensional and three dimensional problems, and 
to realize preconditioned iterative solvers for FETI method, 
which handle the sub domains with Neumann boundary 
condition. 
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