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Abstract. The paper presents the parallelisation of sequential (single-processor) finite element simulations with the use of domain decomposition
methods. These domain decomposition methods are the Schur complement method and the Finite Element Tearing and Interconnecting (FETI)
method. The execution time and speedup of these parallel finite element methods have been compared to each other and to the sequential one.

Streszczenie.

W artykule zaprezentowano paralelizacje sekwencyjnych (jednoprocesorowych) symulacji metodg elementéw skorczonych z

wykorzystaniem metod dekompozycji obszaru. Metody te to metoda uzupetnienia Schura oraz metoda FETI (Finite Element Tearing and
Interconnecting). Czas obliczen i przyspieszenie paralelizowanych metod elementéw skoriczonych zostaty poréwnae migdzy sobg oraz z procesem
sekwencyjnym. (Poréwnanie metod dekompozycji obszaru dla rozwigzywania réwnan rézniczkowych czastkowych eliptycznych z

niestrukturalng siatkg)
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Introduction

Different applications of domain decomposition method
[1, 2] have a long history in computational science. The
reason for employing the substructuring technique was the
small memory of computers. To solve large scale problems,
a domain has been divided into subdomains that fit into the
computer memory. However, the computer memory grows,
the demand for solution of large real life problems is always
ahead of computer capabilites. The large scale
computations and simulations performed with finite element
method (FEM) [3, 4] often require very long computation
time. While limited progress can be reached with
improvement of numerical algorithms, a radical time
reduction can be made with multiprocessor computation. In
order to perform finite element analysis a computer with
parallel processors, computations should be distributed
across processors.

The finite element method [3, 4] is an important
technique for the solution of a wide range of problems in
science and engineering. In electromagnetic computation, it
is based on the weak formulation of the partial differential
equations, which can be obtained by Maxwell's equations
and the weighted residual method [3]. The most time
consuming part of finite element computations is the
solution of the large sparse system of equations. Therefore,
the solution of a large system of equations must be
parallelized in order to speedup the numerical computations
[1].

Two non-overlapping domain decomposition methods,
the Schur complement method [1, 2, 5] and the Finite
Element Tearing and Interconnecting (FETI) method [2, 6,
7, 8] have been used after the partition of the finite element
mesh into subregions or also called subdomains, and it
reduces the large mass matrix into smaller but
interconnecting parts. The independent subdomains, and
the assembling of these equation systems can be handled
by the independent processors of a supercomputer or by

the independent computers of a computer grid, i.e. in a
parallel way. Furthermore, after assembling, the system of
linear equations has been solved in a parallel way, too.

The paper presents a parallel approach for the solution
of two dimensional linear elliptic partial differential equation
problems by parallel finite element method. These problems
are case studies to show the steps of the Schur
complement method [1, 2, 5], and of the Finite Element
Tearing and Interconnecting method [2, 6, 7, 8] with parallel
finite element technique. The comparison focused on the
time, speedup and numerical behaviour of Schur method
and FETI method.

Parallel Finite Element Method with Domain
Decomposition

The parallel finite element based numerical analysis on
supercomputers or on clusters of PCs (Personal
Computers) need the efficient partitioning of the finite
element mesh. This is the first and the most important step
of parallelization with the use of domain decomposition
methods.

The efficient mesh partitioning is necessary for the
distributed computation, because each subdomain should
contain approximately the same number of node points, i.e.
the load balance of processors is nearly equal. When the
parallel system includes p processors, usually the problem
domain is partitioned into p subdomains. The number of
subdomain elements assigned to each processors and the
number of common elements assigned to different
processors are minimized. These are important because of
the load balance of the computations and the minimum
communication among the processors.

Many domain decomposition or graph-partitioning
algorithms can be found in the literature [1, 9]. Gmsh [10]
combined with METIS algorithm [8] has been used for the
discretization of the domain of problem and for the mesh
partitioning. The parallel finite element program has been
implemented in a MATLAB script [11].
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The main idea of domain decomposition method is to
divide the domain Q into several subdomains in which the
unknown potentials could be calculated simultaneously, i.e.
parallel.

The general form of a linear algebraic problem arising
from the discretization of a static field problem defined on
the domain Q can be written as [1, 2, 12]

) Kx=b,
where K € R™N is the symmetric positive definite matrix,
b € RN on the right hand side of the equations represents

the excitation, and x<R" contains the unknown nodal

potentials. Here n is a number of unknowns.
2. Subdomai 3. Subdomain

1. Subdomain

UIRWopqns

5. Subdomain

6. Subdomain
Fig.1. Partitioned two-dimensional problem

Schur Complement Method

The Schur complement method [1, 2, 5] was started to
use many decades ago, and nowadays also a very popular
non-overlapping domain decomposition technique among
engineers.

After the mesh partitioning, equations in (1) has been
split into particular blocks. In the case of Fig. 1, the j‘h
processor contains blocks ( j =1,...,6)[2, 5]

) Kiji Kijr | X5 |_| P
Kri Knn [ %] |Pr]

where KJ—J— is the symmetric positive definite submatrix of
the fh subdomain, bj is the vector of right hand side
defined inside the subdomain. The 77 is the interface
boundary index of the fh subdomain. The submatrix Kjr]_

contains the nodal value ofj‘h subdomain, which connect to
the interface boundary nodes of that region. The Kjrj of

the upper part of the matrix is the transpose of K,—jj of

lower part of the matrix. The KF,-F,- and brj expresses the

coupling of the interface unknowns.
Each subdomain will be allocated to an independent

processor, because the submatrix KJ—J— with  the
Kjrj ,K,—jj and the right-hand side bj are independent,
i.e. these can be handled in a parallel way. Only the KF,-F,-
and b,—j are not independent, these submatrices and

vectores are stored on the distributed memories. The K
and b, are the sum of Krjrj and brj, where j is the

index of sub-domains.

After some algebraic manipulations, the unknowns in
X~ can be calculated by the solution of [2, 5]

Ns
-1 _ -1
@) | K —ZKr,-jijKir,- xp=bp _ZKfjiKﬂbi
=1 =

where the term inside the bracket is the so called Schur
complement, and Ng is the number of subdomain. The
original system of equations contains n unknowns, while the
reduced system (3) contains only the unknowns of x .
This reduction of unknowns is an important feature of the
Schur complement method. Equation (3) is also called the

coarse grid problem, because only the unknowns of interior
boundaries are used.

The inverse of the matrix ij is needed to compute the

corresponding subdomain of the solution vector. However,
matrix KJ-J- never inverted explicitly in practical computing,
because it is very time consuming. Instead of an inverse

matrix, the incomplete LU-factorization [12] has been used
here.

The unknowns of all the other subdomains X; can be

calculated simultaneously [2, 5] i.e.

(4) K]jx]:bj_KerXr’

where j=1,...,6 inthe case of Fig. 1.

The possibility of parallel computation can be decreased
the computation time. The assembly of the submatrices can
be performed parallel by independent processors. However,
for the solution of equation (3) use the submatrices from the
independent processors. After obtaining x,, it must be

sent back to the independent processors to calculate the
subsolutions by equation (4). If the problem is large enough,
the data exchange is a small amount while solving the
problem.

In this paper, the problems are quiet small examples,
this is why a direct solver, the parallel forward-backward
algorithm [1] has been used to solve the equation in (4).

The six subsolutions can be calculated as it illustrated in
Fig. 2. This figure shows the potential distribution and the
equipotential lines of the single-phase transformer.

Finite Element Tearing and Interconnecting

The Finite Element Tearing and Interconnecting (FETI)
method was introduced by Farhat and Roux in reference
[6]. In the last decade, the FETI method [2, 6, 7, 8] has
seemed as one of the most powerful and the most popular
solvers for numerical computation.
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If domain Q is partitioned into a set of Ng disconnected
subdomains (Fig. 1), the FETI method consists  replacing
equation in (1) with the equivalent system of substructure
equations (where j=1,...,Ng)[2,6,7,8]

T

NS
(6) ZBJXJ =0,
j=1

where KJ- is the fh subdomain mass matrix, bj is the fh

vectors of right-hand side, A is a vector of Lagrange
multipliers [2, 6] introduced for enforcing the constraint (6)

on the subdomain interface boundary FJ-, and Bj is a

signed (£ ) Boolean mapping matrix, which used to express
the compatibility condition at subdomain interface FJ- . The

superscript T denotes the transpose.
Usually, the partitioned problem may contain N; < Ng

floating subdomain, where matrices K from being

i
singular. The floating subdomain is a subdomain without
enough Dirichlet boundary conditions. In Fig. 1, the
Subdomain 5 is a floating subdomain, because the outer

boundary is not Dirichlet boundary condition (/7 ), but
Neumann boundary condition (/7). In this case N; of

local Neumann problems (Eq. (6)) are ill-posed. To
guarantee the solvability of these problems, we require that
(2, 6]

T
@ [b;-BT2)LKerK;),
and compute the solution of equation in (5) as [2, 6, 7, 8]

+ T

where K? is a pseudo-inverse of KJ-, RJ- :Ker(Kj) is
the null space [12] of K;, and a; is the set of amplitudes
that specifies the contribution of the null space RJ- to the

solution Xj.

Moore-Penrose matrix inverse [12] has been used here.

The introduction of the a; is compensated by the

additional equations resulting from (4) [2, 6, 7, 8]
T T
@ R, -Ba)=0.

Instead of a pseudo-inverse of matrix, the

Substituting equation (8) into the equation (6) and
exploiting the solvability condition (9) leads after some
algebraic manipulations to the following FETI interface
problem [2, 6, 7, 8]

(10) F, -G, || A _ d
—G|T 0 |o| |-e
where [2, 6, 7, 8]

NS
F, =ZBJ-K}BT ,
j=1

(11) G| :[BIRI e BNSRNS ],
Ng .
j=1

e=pTR, .. bR, |

In order to solve equation in (10) for the Lagrange
multiplier vector A, the following splitting of A is performed
[2,6,7,8]

(12) =2, +PQx,

-1
where 4, =QG, (GTQG,) e, which is a particular
solution of G,Tx =e, and P(Q) is a projection operator [2],

which is for any matrix Q, GlTP(Q):O by

P(Q)=1-QG, (G|TQG| )_1G|T. In this paper, A =F;d

and Q= F,+ choosen, based on reference [8]. After some

algebraic manipulations equation in (12) leads to the
following equation

(13) A=F(d+G,a),

1
where a =—(GTF,+G,y (G,TFrd—e).

The interface problem (10) is the best solved by an
iterative algorithm [2, 6, 7, 8]. However, in this paper a
direct solver has been used by the above mentioned
parameters.

Test Problems

Two test problems have been used for the comparison,
which can be seen in Fig. 3. The first benchmark is a single-
phase transformer, and the second one is a parallel-plate
capacitor [5].

L=5500p,

Fig.3. The test problems.

The choosen test problems are static problems, where
the partial differential equations are elliptic type [3, 5]. The
2D problem is dicretized by triangle elements and linear
nodal shape functions have been used for the test
problems. These problems are enough to simulate the
quarter of the problem because of symmetry.

Results and Discussion

The computations have been carried out on a massively
parallel computer (SUN Fire X2250). This computer works
with a shared memory topology. The parallel programs
have been implemented under the operating system Linux.

Table 1, Table 2 and Table 3 presents the comparison
of domain decomposition methods at three different mesh
sizes. The 23110 and 45967 number of unknowns (DOF)
problems are the static magnetic field problem with. the
single-phase transformer. The 37661 DOF problem is the
electrostatic problem with the parallel-plate capacitor. In the
tables, Np is the number of processors and Npor is the
number of unknowns on each sub-domain.

The times of sequential computation of 23110, 37661
and 45967 problems are 31.272 sec, 87.9131 sec and
118.5621 sec, respectively.

The times in the brackets at FETI method is the
computation time of the full problem with a same mesh size
as the quarter one. If the full problem is calculated, the
problem does not contain floating sub-domain, because the
outer boundaries are Dirichlet boundary condition.
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Fig. 4 shows the speedup tests of the function of the
number of the applied processors. The speedup of
problems clearly show, if the size of full problem increased
the speedup of FETI method (FETI-full) is also increased.
However, this is not true at FETI-quarter, i.e. when the
problem contains floating subdomain. The speedup of
Schur method is increased when the number of processors
are increased.

Table 1. Performance comparison of Schur and FETI methods at
23100 DOF.

N N Schur FETI
P DOF Time [sec] Time [sec]

2 11633 31.8679 19.1888

3 7804 14.4887 11.2188

4 5853 9.1514 7.7721

5 4703 6.5774 6.7625

6 3930 54711 5.8121

7 3389 4.8756 16.4467 (4.8933)
8 2965 4.5103 14.6080 (5.3837)

Table 2. Performance comparison of Schur and FETI methods at
37661 DOF.

N N Schur FETI
i DOF Time [sec] Time [sec]

2 19014 83.3859 48.7743

3 12713 43.0057 26.3409

4 9613 29.8087 18.0200

5 7671 23.8673 14.3775

6 6402 16.2492 57.7801 (12.2929)
7 5490 13.8095 47.0895 (9.6963)
8 4865 10.8847 43.2187 (9.4909)

Table 3. Performance comparison of Schur and FETI methods at
45967 DOF.

N N Schur FETI
P DOoF Time [sec] Time [sec]
2 23091 106.1977 68.2186
3 15429 68.8367 37.9652
4 11577 50.3323 23.6598
5 9290 32.5471 18.2715
6 7752 24.6692 16.3725
7 6671 20.9650 72.7768 (13.8424)
8 5847 17.6793 56.9673 (11.9318)
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Fig.4. Speedup tests of static field problems.

[

Conclusion

One electrostatic and one static magnetic field problems
have been solved by parallel finite element method. The
parallel finite element program with Schur complement
method and finite element tearing and interconnecting
method works properly, because the time is decreased
when the number of processors is increased. The speedup
achieved over 7-fold and 5-fold speedup by 8 processors at
the Schur and the FETI methods, respectively.

The aim of future research is to solve more complex,
large two dimensional and three dimensional problems, and
to realize preconditioned iterative solvers for FETI method,
which handle the sub domains with Neumann boundary
condition.
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