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Abstract. The paper presents a new short-time spectrum estimation algorithm for speech enhancement. A novel multivariate Laplace speech model 
is utilized to characterize the dependencies between adjacent DFT coefficients of speech, based on which a minimum mean-square error (MMSE) 
estimator of speech spectral components is derived. Moreover, the speech presence uncertainty is incorporated to modify the MMSE estimator. 
Experimental results show that the developed algorithm achieves better noise suppression and lower speech distortion compared to the existing 
speech enhancement methods. 
 
Streszczenie. W artykule przedstawiono nowy algorytm estymacji krótkookresowego spektrum głosu do poprawy dźwięku mowy. Wykorzystano 
wieloczynnikowy model Laplace’a w celu scharakteryzowania zależności pomiędzy składnikami DFT dźwięku mowy. Na tej podstawie obliczane jest 
minimum błędu średnio-kwadratowego dla estymatora. Wyniki eksperymentalne potwierdzają ulepszoną skuteczność eliminacji zakłóceń mowy, w 
porównaniu ze stosowanymi metodami. (Wieloczynnikowy model mowy Laplace’a w estymatorze spektrum krótkookresowego, na potrzeby 
polepszenia dźwięku)  
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1 Introduction 

Speech enhancement plays an important role in speech 
processing systems and is very useful in many applications 
such as speech communication and automatic speech 
recognition. As speech signal is often corrupted by noise 
during acquisition or transmission, the underlying goal of 
speech enhancement is to obtain the noise-free speech 
from the corrupted speech. Although various approaches to 
this problem have been adopted during the last decades, it 
is still one of the most fundamental, widely studied, and 
largely unsolved problems in speech processing. 

Single channel speech enhancement methods based on 
short-time spectrum estimation have received significant 
interest due to the low complexity and relatively good 
performance. Fig. 1 presents the block diagram of a typical 
speech enhancement system based on short-time spectrum 
estimation. The clean speech signal s(n) is mixed with 
additive background noise d(n) to give the noise-corrupted 
speech signal y(n). After segmentation and windowing with 
a function h(n), e.g., Hamming window, the noisy speech is 
enhanced in the short-time Fourier transform (STFT) 
domain using a spectral  gain function. The enhanced 
speech is then reconstructed from the inverse transformed 
frames using overlap-add (OLA) synthesis. 

In the statistically motivated short-time spectrum 
estimation, the recovery of the underlying noise-free speech 
spectral coefficients from the noisy speech is generally 
treated as a Bayesian problem, where the statistical priors 
of speech and noise are modeled appropriately. For 
instance, in the well-known minimum mean square-error 
(MMSE) estimator derived in [1], the short-time spectral 
amplitudes of speech are restored assuming that the 
speech DFT coefficients are Gaussian distributed. Further 
results show that super-Gaussian priors are much better 
models for speech spectral components than the Gaussian 
priors [2]. Therefore, a number of speech enhancement 
algorithms with super-Gaussian priors have been 
developed, e.g., [3], [4], [5]. More recently, the generalized 
Gamma distribution is utilized to model speech spectral 
components, leading to more flexible spectrum estimators, 
e.g., [6], [7], [8]. 

Although those aforementioned methods have been 
successfully applied to improve the performance of speech 
enhancement, most of them are still based on the traditional 
assumption of independence, i.e., they assume that the 
speech spectral components are independent with each 

other. However, this assumption is inexact and there is 
some correlation between speech spectral coefficients in 
practice, mainly due to the effect of short-time window and 
the harmonicity of voiced speech [9]. Several methods have 
been proposed to solve this problem. In [9], a block-based 
linear MMSE estimator was developed to exploit the mutual 
correlations between spectral coefficients. Instead of 
assuming the spectral components to be independent, the 
method takes the spectral and temporal correlations into 
account by ways of an improved model for signal 
covariance matrix. Besides, a multidimensional short-time 
spectral amplitude estimator was derived in [10], in which 
the correlated spectral components were estimated jointly 
using a novel multidimensional Bayesian estimator. 
However, the closed-form solution was not given in the 
paper due to the complexity. Taking these factors into 
consideration, we propose a new speech enhancement 
method with a multivariate Laplace speech prior. Base on 
the assumption that the adjacent speech spectral 
coefficients can be modeled approximately by multivariate 
Laplace distribution, a new MMSE estimator that is able to 
exploit the spectral dependencies is derived analytically. 
Moreover, the speech presence uncertainty is also involved 
to further improve the performance.  

The remainder of the paper is organized as follows. 
Section 2 gives an overview of the statistical framework of 
short-time spectrum estimation. Section 3 introduces the 
multivariate Laplace distribution as a new speech model. 
The proposed speech enhancement algorithm is presented 
in section 4, including the MMSE estimator and the speech 
presence possibility, both of which are derived based on the 
multivariate Laplace speech model. The experimental 
results and performance evaluations are given in section 5 
and finally, section 6 presents our conclusion.  

 

 
 
 
 
 
 
 
 
 

Fig.1. Block diagram of short-time spectrum estimation for speech 
enhancement. 
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2 Short-time spectrum estimation 
Let y(n)=s(n)+d(n) be the noisy speech signal consisting 

of the clean speech s(n) and the additive noise d(n). Taking 
the short-time Fourier transform (STFT) of y(n), the DFT 
coefficients of the noisy speech at frequency bin k and 
frame l are given by 
(1)  ( ) ( ) ( )k k kY l S l D l    

where Sk(l), Dk(l) represent the DFT coefficients of the clean 
speech and the noise respectively. It is assumed 
conventionally that Sk(l) and Dk(l) are statistically 
independent across time and frequency, which allows to 
dropping the time and frequency indices l, k for the sake of 
readability, i.e., 
(2)  Y S D   

The objective of speech enhancement is to estimate the 
noise-free speech coefficients S from the noisy coefficients 
Y. The optimal estimate of S, in the sense of MMSE, is given 
as 

(3)  
|{ | } ( | )S YS E S Y Sp S Y dS




    

where pS|Y(S|Y) is the probability distribution function (PDF) 
of clean speech coefficients S conditioned on noisy speech 
coefficients Y. Furthermore, given the assumed 
independence of the real and the imaginary parts of the 
complex DFT coefficients, the MMSE estimator in (3) may 
be split into the estimators for the real and the imaginary 
parts[3],  

(4)   { | } { | } { | }R R I IS E S Y E S Y jE S Y    

where the subscripts R and I denote the real and imaginary 
parts of a complex variable respectively. Since the two parts 
in (4) can be treated independently in a similar procedure, 
we will only focus on the estimation of real part, E{SR|YR} in 
the following. 

To derive the MMSE estimator in the Bayesian 
framework, it is required to assume appropriate statistical 
priors for the clean speech and the noise. Without loss of 
generality, the noise is often modeled as Gaussian priors, 

i.e., D~N(D; 0, 2
D ). Various priors have been developed to 

model the clean speech. For example, in the well-known 
Wiener estimator, the Gaussian prior is utilized to model 
speech spectral components motivated by the central limit 
theorem [1]. Thus,  

(5)  
2

2 2
S

R R
S D

S Y


 



 

where 2
S and 2

D are the variance of the spectral 

components of the speech and the noise, respectively.  
Considering the fact that the distribution of speech 

spectral coefficients is more super-Gaussian rather than 
Gaussian, a Laplace speech prior is applied in spectrum 
estimation, that is 

(6)  
2 | |1

( ) exp R
S R

S S

S
p S

 
 

  
 

 

and then under the additive white Gaussian noise 
assumption, the MMSE estimation of SR is 

(7) 

2 2
exp erfc( ) exp erfc( )

2 2
exp erfc( ) exp erfc( )

R R

D DD
R R

R R

D D

Y Y

S Y
Y Y

 
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
 

   

 

 

   
       

    
   

       
   

 

where λ+=σD/σS, λ-=σD/σS –YR/σD, 2 2
S D   denotes a prior 

signal-to-noise ratio (SNR) ， and erfc(·) denotes the  
complementary error function [3]. 
 

3 Multivariate Laplace distribution 
The PDF of a Laplace distributed random vector x is 

given as follows [11], 

(8)  

/ 2 1

/ 2 12

1 1 2
( )

2

d

dp K
 





   
          

x x x
x

 

where d is the dimension of x, σ2 is the variance of the 
Laplace marginal distribution of x, and Kλ(t) denotes the 
modified Bessel function of the second kind, which is 
defined as 

(9)  
2

1

0

1
( ) exp

2 2 4

t t
K t a a da

t






             
   

  

In order for derivation, the Gaussian scale mixture 
(GSM) representation of a Laplace random vector x is 
usually used in practice [12], i.e., 

(10) , , , 0dz z with z         x u x u   
where u is a d-dimensional zero-mean Gaussian random 

vector with covariance matrix 2 dI ,  

(11) 

2

2 / 2 2

1
( ) exp

(2 ) 2d
p

 

 
  
 
 

u

u
u  

and z is a unit mean exponential random variable,  
(12) ( ) exp( ) 0zp z z z    ，  

Therefore, the PDF of x can be expressed as 

(13) 
0

1
( ) ( )a d

p p a p da
aa

    
 x u

x
x  

where a= z ，and the PDF of a is 

(14) 2 2( ) 2 ( ) exp( ), 0a zp a ap a a a a      . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. (a) Multivariate Laplace distribution versus (b) multivariate 
Gassuian distribution with d = 2. 
 

The comparison of multivariate Laplace distribution and 
multivariate Gaussian distribution for d=2 is illustrated in Fig. 
1. It is clear that the multivariate Laplace distribution is more 
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peaked and heavy-tailed compared to the multivariate 
Gaussian distribution, and thus better fitted to the histogram 
of speech spectral coefficients. In addition, as a random 
vector composed of a set of random variables, it is able to 
characterize the dependencies between the spectral 
components implicitly.  

 
4 The Proposed algorithm 

In this section, we derive the MMSE estimator and the 
speech prensence uncertainty under the multivarite Laplace 
speech model. Taking into account the assumption that the 
real and imaginary parts of speech DFT coefficients, SR and 
SI, are statistically independent, we will only consider the 
estimation of SR; a similar procedure can be followed for SI. 
To enhance the brevity of the following results, we will drop 
the subscripts R and I. 
4.1 MMSE estimator with multivariate Laplace speech prior 

we assume that a d-component vector S, composed of 
the real parts of the adjacent speech DFT coefficients, is 
modeled as multivariate Laplace distribution,  

(15) 

/ 2 1

/ 2 12

1 1 2
( )

2

d

d
SS S

p K
 





   
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S S S
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where 2
S  denotes the variance of each speech spectral 

component in S. The noise is assumed to be additive zero-

mean white Gaussian noise with covariance matrix 2
D dI ,  

(16) 

2

2 / 2 2

1
( ) exp

(2 ) 2d
D D

p
 

 
   
 
 

D

D
D  

Then the PDF of Y, the real parts of DFT coefficients of 
noisy speech, also a random vector with d components, is 
obtained by the multivariate convolution,  

(17) ( ) ( ) ( )
d

p p p d Y S DY S Y - S S


 

Using the GSM representation of S as derived in (13), we 
get 

(18) 

2

2 /2 2

1 1 1
( ) exp 1 , ;

2(2 ) 2d
S S

d
p

  

              
Y

Y
Y  

where 2 2
S D   denotes the a prior SNR, and Γ(α, x; b) is 

the generalized incomplete gamma function which is 
defined as 

(19) 1( , ; exp
x

b
 x  b t t dt

t


          
   

The MMSE estimator of speech spectral components given 
Y is 

(20) 


|{ | } ( | )
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d
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S E S S p d
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where Si is the ith scalar component of S.  
 Using (15), (16) and (18) in (20), we get,  

(21) 

2

2

2

2

1
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2 21
{ | } 1

1
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2 2

S
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S

d

S E S Y
d
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Y
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where Yi is the ith scalar component of Y. 
 The equation (21) is the analytical solution for the 
MMSE estimator under the assumption of multivariate 
Laplace speech prior. Note that if d is set to 1 in (21), the 
estimator will degenerate to the estimator proposed in [3]. 

Therefore, the new estimator can be regarded as a 
generalization of MMSE estimator with univariate Laplace 
prior, and the well-known estimator derived in [3] is a 
special case under the condition that the dimension d=1. 
4.2 Speech presence uncertainty 
 Motivated by the fact that speech is not surely present at 
all times and at all frequencies, the speech presence 
uncertainty is usually incorporated into MMSE estimator to 
improve the performance[1]. Therefore, we derive the 
speech presence possibility under the new multivariate 
Laplace prior model in this subseciton.  

A two-state model is considered for speech events, i.e., 
that either speech is present at a particular frequency bin 
(hypothesis H1) or that is not (hypothesis H0). According to 
[1], the modified MMSE estimator under speech presence 
uncertainty is given by 

(22)  1
mod

( , )
{ | , }

1 ( , )i i

q
S E S H

q

 


  
Y

Y
Y

 

where E{Si|Y,H1} equals to E{Si|Y} which has been derived 
in equation (21), and Λ(Y, q) is a generalized likelihood ratio 
which is defined as 

(23) 
1

0

1 ( | )
( , )

( | )

q p H
q

q p H


  

Y
Y

Y
 

where q denotes the a priori probability of speech absence. 
Under the assumption in the last subsection that the speech 
spectral coefficients is modeled as a multivariate Laplace 
distribution and that the noise is additive multivariate 
Gaussian, we obtain,  

(24) 1( | ) ( )p H p YY Y  

(25) 0( | ) ( )p H p DY Y  

Using (16) and (18) in (23) gives,  

(26) 2 2/ 2

2 2

( )1
( , )

( )

1 1 1 1
exp 1 , ;
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q    


  
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Y
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5 Experimental results 
The proposed algorithm was implemented in MATLAB, 

with the following experimental setup. The sampling 
frequency was 8000Hz. A frame length of 256 samples with 
50% overlap was used. The frames were windowed using a 
Hanning window. The test set consisted of 16 Chinese 
speech utterances, spoken by two male and two female 
speakers. Three types of background noise in the NOISEX-
92 database were used in the experiments: white Gaussian 
noise, M109 tank noise and F16 aircraft noise. The noises 
were resampled at 8000Hz and then used to corrupt the 
speech  utterances  at a  SNR level varying from -5 dB to 
10 dB.  

We compare the performance of the proposed algorithm 
(PA) to the algorithm based on univariate Laplacian speech 
model (ULAP) described in [3] and the multidimensional 
Bayesian estimator (MDB) proposed in [10]. To determine 
the variance of the noise, a minimum statistics [13] noise 
estimator is employed in all the three algorithms. The a 
priori SNR is estimated using the “decision-directed” 
approach of [1] with a fixed smoothing parameter of α = 
0.95. A fixed value of q = 0.2 is adopted in this paper, with 
reference to [1]. In addition, the dimension of the random 
vector is set as d = 12 empirically for the proposed 
algorithm. The performances of speech enhancement 
algorithms are evaluated in terms of segmental SNR 
(SSNR), Log spectral distance (LSD), perceptual evaluation 
of speech quality (PESQ) and speech spectrogram.  
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5.1 Segmental SNR improvement 
The amount of noise attenuation is generally measured 

by segmental SNR (SSNR), which is defined as 

(27) 

2
1

10 2
0

1
10log

M
m

m mm

SSNR
M





 
   
  

 
s

s s
  

where sm and m
s denote the original clean and enhanced 

speech signal frame respectively, M is the total number of 
frames, and (·)=max(min(·, 35), -10), confining the local 

SNR to a perceptual meaningful range [-10dB, 35dB].  
Fig. 2 gives the average SSNR improvements for the 

three algorithms under white Gaussian, M109 tank, F16 
aircraft noises at various noise levels. The results show that 
the proposed algorithm provides a noticeable improvement 
in noise suppression, across noise types and levels, relative 
to ULAP and MDB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. SSNR improvements of the three algorithms in (a) white 
Gaussian noise, (b) M109 tank noise, and (c) F16 aircraft noise. 
 
5.2 Log spectral distance (LSD) performance 

The LSD measures the dissimilarity between the spectra 
of clean speech and enhanced speech, which is expressed 
by the following equation, 

(28) 

2

21

10
0 0

( , )1 1
10log

2 1 ( , )

NM

l k

S k l
LSD

M N S k l



 

 
   
 
 

   

where ( , )S k l and ( , )S k l  are the magnitude spectra of the 

original clean and the  enhanced speech signals of the lth 
frame, respectively. Note that large value of LSD implies 
bad performance.  

The average LSD performances for the three algorithms 
are presented in Fig. 3, which shows that the proposed 
algorithm outperformed the other two algorithms in terms of 
speech distortion. Specificially, much more improvements 
are obtained at low SNR levels such as -5dB and 0dB, 

especially under white Gaussian noise and M109 tank noise 
conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. LSD comparison of the three algorithms in (a) white 
Gaussian noise, (b) M109 tank noise, and (c) F16 aircraft noise. 
 
Table1. PESQ scores of the three algorithms 

Noise type 
Input 

SNR/dB 
ULAP MDB PA 

white 
Gaussian 

noise 

-5 2.16 2.23 2.33 

0 2.68 2.73 2.84 

5 3.04 3.09 3.16 
10 3.24 3.29 3.34 

M109 tank 
noise 

-5 2.31 2.46 2.55 
0 2.83 2.94 3.02 
5 3.23 3.32 3.38 

10 3.49 3.58 3.57 

F16 aircraft 
noise 

-5 2.21 2.32 2.44 
0 2.66 2.78 2.85 
5 3.01 3.12 3.20 

10 3.28 3.36 3.41 

 
5.3 Overall speech quality 

The PESQ is a measure designed to predict the 
subjective opinion score of a degraded speech utterance 
and it is recommended by ITU-T for speech quality 
assessment [14]. It has been proven to be more reliable 
than some traditional objective measures. Therefore, PESQ 
measure is adopted as an excellent objective measure tool 
for predicting the overall quality of enhanced speech. 

The PESQ results of the proposed algorithm are given 
in Table 1. It is obvious that the quality of enhanced speech 
by the proposed algorithm is better than that by ULAP. 
Even though compared with MDB, the PESQ improvements 
seem marginal, the perceptual quality of enhanced speech 
for the proposed algorithm is much better, which has been 
illustrated by informal subjective evaluations. 
5.4 Spectrograms 

The spectrograms of the clean, noisy, and enhanced 
speech by the three algorithms are shown in Fig. 4, in which 
the speech is corrupted by white Gaussian noise at 
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SNR=5dB. It demonstrates that the proposed algorithm 
suppresses a more significant amount of background noise 
and preserves most parts of the speech in comparison with 
the other two algorithms. Specifically, The ULAP leads to 
more visible residual noise, while the MDB introduces 
slightly more noticeable speech distortion than the 
proposed algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. The spectrograms of the clean, noisy, and enhanced speech 
by the three algorithms. (a) Clean speech; (b) noisy speech 
corrupted by 5dB white Gaussian noise; (c) enhanced speech by 
ULAP; (d) enhanced speech by MDB; (e) enhanced speech by PA.  
 
6 Conclusion 

This paper proposed a new short-time spectrum 
estimation algorithm for single channel speech 
enhancement. Instead of assuming that the spectral 
components of speech are independent with each other, a 
new speech prior model, multivariate Laplace distribution 
model, was utilized to characterize the dependencies 
between frequency bins. The MMSE estimator based on the 
new speech model was derived using the GSM 
representation of random vectors and, furthermore, the 
speech presence probability was incorprated to modify the 
estimator. Note that if the dimension in the proposed 
estimator was set to 1, the new estimator degraded to the 
well-known Laplacian model-based MMSE estimator 
proposed in [3]. Therefore， the proposed estimator was 
regarded as a generalization of the MMSE estimator with 
univariate Laplace speech model. The Experimental results 
in terms of SNR, LSD and PESQ measures have 
demonstrated the effectiveness of the proposed algorithm 
under various noise conditions. 

 

Acknowledgement 
The authors wish to acknowledge the financial support 

of Natural Science Foundation of Jiangsu Province in 
2009(BK2009059) 
 

REFERENCES 
[1] Y. Ephraim and D. Malah, “Speech enhancement using a 

minimum mean-square error short-time spectral amplitude 
estimator,” IEEE Trans. Acoust., Speech, Signal Process., vol. 
32, no. 6, pp.1109–1121, Dec. 1984. 

[2] S. Gazor and W. Zhang, “Speech probability distribution,” IEEE 
Signal Process. Lett., vol. 10, no.7, pp. 204–207, Jul. 2003. 

[3] R. Martin, “Speech enhancement based on minimum mean-
square error estimation and supergaussian priors,” IEEE Trans. 
Speech Audio Process., vol. 13, no. 5, pp. 845–856, Sep. 2005. 

[4] R. C. Hendriks, R. Heusdens and J. Jensen, “Log-spectral 
magnitude MMSE estimators under super-Gaussian densities,” 
in Proc. INTERSPEECH, 2009, pp. 1319-1322. 

[5] K. Paliwal, B. Schwerin, and K. Wojcicki, “Single channel 
speech enhancement using MMSE estimation of short-time 
modulation magnitude spectrum,” in Proc. of INTERSPEECH, 
Florence, Italy, 2011, pp. 1209-1212. 

[6] J. S. Erkelens, R. C. Hendriks, R. Heusdens, and J. Jensen, 
“Minimum mean-square error estimation of discrete Fourier 
coefficients with generalized Gamma priors,” IEEE Trans. 
Audio, Speech, Lang. Process., vol. 15, no. 6, pp. 1741–1752, 
Aug. 2007. 

[7] T. Esch and P. Vary, “Model-based speech enhancement using 
SNR dependent MMSE estimation,” in Proc. IEEE Int. Conf. 
Acoust.,Speech, Signal Process., Prague, Czech, May 2011, 
pp. 4652-4655. 

[8] B. J. Borgstrom and A. Alwan, “Log-spectral amplitude 
estimation with generalized Gamma distributions for speech 
enhancement,” in Proc. IEEE Int. Conf. Acoust.,Speech, Signal 
Process., Prague, Czech, May 2011, pp. 4756-4759. 

[9] C. Li and S. V. Andersen, “A block-based linear MMSE noise 
reduction with a high temporal resolution modeling of the 
speech excitation,” EURASIP J. Appl. Signal Process., vol. 18, 
pp. 2965–2978, 2005. 

[10] E. Plourde and B. Champagne, “Multi-dimensional Bayesian 
STSA estimators for the enhancement of speech with 
correlated frequency components,” IEEE Trans. Signal 
Process., vol. 59, no. 7, pp. 3013-3024, Jul. 2011. 

[11] I. W. Selesnick, “The estimation of Laplace random vectors in 
additive white Gaussian noise,” IEEE Trans. Signal Process., 
vol. 56, no. 8, pp. 3482-3496, Aug. 2008. 

[12]J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, 
“Image denoising using scale mixtures of Gaussians in the 
wavelet domain,” IEEE Trans. Image Process., vol. 12, no. 11, 
pp. 1338–1351, Nov. 2003. 

[13] R. Martin, “Noise power spectral density estimation based on 
optimal smoothing and minimum statistics,” IEEE Trans. 
Speech Audio Process., vol. 9, no. 5, pp. 504–512, Jul. 2001. 

[14] Perceptual Evaluation of Speech Quality (PESQ) and Objective 
Method for End-to-End Speech Quality Assessment of 
Narrowband Telephone Networks and Speech Codecs, ITU-T 
Rec. P. 862, 2001. 

 
 
Authors: 
Bin ZHOU, Postgraduate Team 2, Institute of Command 
Automation, Haifu Xiang 1, Baixia District, Nanjing, China, 210007, 
E-mail: binzhou86@yahoo.com.cn;  
Xiong-wei ZHANG, PLA University of Science and Technology. 
Xia ZOU, PLA University of Science and Technology. 
Gaihua ZHAO, PLA University of Science and Technology. 
 

 


