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Abstract. This paper introduces an intelligent-based method using artificial neural network (ANN) to reduce shunt reactor switching overvoltages.  In 
power systems, an overvoltage could be caused by core  saturation on the energization of a shunt reactor with residual flux. The most effective 
method for the limitation of the switching overvoltages is controlled switching since the magnitudes of the produced transients are strongly dependent 
on the closing instants of the switch.  We introduce a harmonic index that it’s minimum value is corresponding to the best case switching time.  In 
addition, in this paper three learning algorithms, delta-bar-delta (DBD), extended delta-bar-delta (EDBD) and directed random search (DRS), were 
used to train the ANNs to estimate the optimum switching instants for real time applications. ANN is trained with equivalent circuit parameters of the 
network, so that developed ANN is applicable to every studied system. To verify the effectiveness of the proposed index and accuracy of the ANN-
based approach, two case studies are presented and demonstrated.  
 
Streszczenie. W artykule przedstawiono metodę redukcji możliwych przepięć łączeniowych, występujących w reaktancji bocznikowej, przy 
wykorzystaniu algorytmu inteligentnego, opartego na sieciach neuronowych. Wyznaczono wskaźnik określający najlepsze momenty przełączeń, w 
zależności od pojawiających się stanów nieustalonych. Do trenowania sieci neuronowej wykorzystano trzy algorytmy uczące się. Przedstawiono dwa 
przykłady potwierdzające skuteczność działania. (Redukcja przepięć w reaktancji bocznikowej – algorytmy DBD oraz DRS). 
 
Keywords: Artificial neural networks, harmonic index, transient overvoltages, shunt reactor switching. 
Słowa kluczowe: sztuczne sieci neuronowe, indeks harmonicznych, przepięcia, przełączanie reaktancji bocznikowej. 
 
 
1. Introduction 

Long EHV transmission lines are generally 
compensated by means of shunt reactor sets [1]. Reactor 
failures have directed attention to the transient overvoltages 
generated by reactor switching. Shunt reactors are applied 
to regulate the reactive power balance of a system by 
means of compensating for the surplus reactive power 
generation of transmission lines. Reactors are normally 
disconnected at heavy load and are connected to the lines 
at periods of low load. Consequently, frequent switching is a 
significant characteristic of shunt reactors in order that they 
can react to the changing system load condition [1,2]. 

As is well known, if a sinusoidal current of an inductive 
element is interrupted before the natural current zero, high 
overvoltage of an oscillating nature can arise. The bigger 
the current chopped, the higher the overvoltage peak. If the 
circuit breaker cannot withstand the oscillating recovery 
voltage stress, a restrike occurs. In this case the voltage 
across the open contacts becomes a surge input to the 
network, leading to transient overvoltages [1]. 

The fundamental requirement for all controlled switching 
applications is the precise definition of the optimum 
switching instants [3]. This paper presents a novel method 
for controlled energization of shunt reactors in order to 
minimize transient overvoltages. We introduce a harmonic 
index to determine the best case switching time. Using 
numerical  algorithm we can find the time that the harmonic 
index is minimum, i.e., harmonic  overvoltages is minimum.  
Also, for real time applications, this paper  presents an 
Artificial Neural Network (ANN)-based approach to  estimate 
optimum switching angle during shunt reactor energization. 
The proposed ANN is expected to learn many scenarios of 
operation to give the optimum switching angle in a shortest 
computational time which is the requirement during online 
operation of power systems. In the proposed ANN we have 
considered the most important aspects, which influence the 
inrush currents such as voltage at shunt reactor bus before 
switching, equivalent resistance, equivalent inductance, 
equivalent capacitance, line length, line capacitance, 
switching angle, and remanent flux. This information will 
help the operator to select the proper best-case switching 
condition of shunt reactor to be energized safely with 
transients appearing safe within the limits. 

 

2. Modelling Issues 
2.1. PSB 

Simulations presented in this paper are performed using 
the PSB [4]. The simulation tool has been developed using 
state variable approach and runs in the MATLAB/Simulink 
environment. This program has been compared with other 
popular simulation packages (EMTP and Pspice) in [5]. The 
user friendly graphical interfaces of PSB enable faster 
development for power system transient analysis. 

 
2.2. Generator Model 

In [6] generators have been modeled by generalized 
Park’s model that both electrical and mechanical part are 
thoroughly modeled, but it has been shown that a simple 
static generator model containing an ideal voltage source 
behind the sub-transient inductance in series with the 
armature winding resistance can be as accurate as the Park 
model. Thus in this work, generators are represented by the 
static generator model. Phases of voltage sources are 
determined by the load flow results. 

 
2.3. Transmission-Line Model 

Transmission lines are described by the distributed line 
model. This model is accurate enough for frequency 
dependent parameters, because the positive sequence 
resistance and inductance are fairly constant up to 
approximately 1 KHz [7] which cover the frequency range of 
harmonic overvoltages phenomena. 

 
2.4. Shunt Reactor Model 

The model takes into account the leakage inductance as 
well as the magnetizing characteristics of the core, which is 
modeled by a resistance, Rm, simulating the core active 
losses and a saturable inductance, Lsat. The saturation 
characteristic is specified as a piece-wise linear 
characteristic [8]. 

 
2.5. Load Model 

All of the loads are modeled as constant impedances. 
 
3. Study of Shunt Reactor Overvoltages 

In high-voltage (HV) power systems usually power is 
transmitted through long high-voltage transmission lines. 
During the low demand periods (nights or weekends), 
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excessive reactive power produced by the capacitance of 
these lines causes a voltage increase over 1.1 p.u. at the 
high-voltage/medium-voltage (HV/MV) substations. For the 
absorption of the surplus reactive power, HV shunt reactors 
are connected to the receiving end of the transmission 
lines. Switching of those shunt reactors produce transients 
that need to be carefully studied and, if required, limited 
[8,9]. If the frequency characteristic of the system shows 
resonance conditions around multiples of the fundamental 
frequency, very high and weakly damped temporary 
overvoltages (TOVs) of long duration may occur when the 
system is excited by a harmonic disturbance [10-13]. 

This paper concentrates on the estimation of harmonic 
overvoltages. These are a result of network resonance 
frequencies close to multiples of the fundamental 
frequency. They can be excited by harmonic sources such 
as saturated reactors, power electronics, etc. They may 
lead to long lasting overvoltages resulting in arrester 
failures and system faults [11,14,15]. 
 
4. Optimum Switching Condition Determination for 
Overvoltages Simulation 

The main part of a controlled switching arrangement is a 
controller, which is the “brain” of the system. It receives the 
signals from the measuring devices, determines the 
appropriate reference phase angles and sends the 
switching commands to each pole of the switching device 
so that closing operation occurs at the optimum instant. 

Normally for harmonic overvoltages analysis, the best 
case of the switching condition must be considered which it 
is a function of switching time, shunt reactor characteristics 
and its initial flux condition, and impedance characteristics 
of the switching bus. Using the best switching condition, the 
harmonic overvoltages peak and duration can be reduced 
significantly. 

In order to determine best-case switching time, the 
following index is defined as 
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where: 0t  – switching time, r  – remanent flux, k – harmonic 

order. 
 

This index can be a definition for the best-case switching 
condition. Using a numerical algorithm, one can find the 
switching time for which W is minimal (i.e., harmonic 
overvoltages is minimal).  

The sample system considered for explanation of the 
 proposed methodology is a 400 kV EHV network shown in 
 Fig. 1. The  normal peak value of any phase voltage is 
400√2/√3 kV and  this value is taken as base for voltage p.u. 
In the system  studies 400 kV line-to-line base voltage and 
100 MVA as a  base power is considered. 

Fig. 2 shows the result of the frequency analysis at bus 
2. The magnitude of the Thevenin impedance, seen from 
bus 2, Zbus2 shows a parallel resonance peak at 200 Hz. 
Fig. 3 shows changes of harmonic currents and W index 
with respect to the switching angle, where k is harmonic 
number. Fig. 4 shows the harmonic overvoltages after the 
 shunt reactor energization for the best-case condition (i.e., 
64°). For temporary overvoltages, the overvoltage duration 
has to be taken into account in addition to the amplitude 
[16]. Table 1 summarizes the results of overvoltages 
simulation for five different switching conditions that verify 
the effectiveness of W index. 

 
 

 
 
Fig. 1. Sample system for shunt reactor energization study. G: 
generator, Reqv: equivalent resistance, Leqv: equivalent inductance, 
and Ceqv: equivalent capacitance. 
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Fig. 2. Impedance at bus 2. 
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Fig. 3. Changes of harmonic currents and W index with respect to 
the switching angle. 
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Fig. 4. Voltage at bus 2 after switching of shunt reactor for best 
switching condition. 

 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 88 NR 12a/2012                                                                            271 

Table 1. Effect of Switching Time on the Minimum of Overvoltages 
and Duration of Vpeak > 1.3 p.u. 

Switching Angle 
[deg.] 

Vpeak [p.u.] 
Duration of (Vpeak > 1.3 
p.u.) [s] 

64 1.1762 0 
32 1.6215 0.4362 
10 1.4935 0.3008 
69 1.3284 0.0873 
40 1.5509 0.3127 

 

5. The Artificial Neural Network 
The basic structure of the Artificial Neural Network 

(ANN) is shown in Fig. 5. The ANN consists of three layers 
namely, the inputs layer, the hidden layer, and the output 
layer. Training a network consists of adjusting weights of 
the network using a different learning algorithm [17,18]. In 
this work, ANNs are trained with the two supervised and 
one reinforcement learning algorithms. In this paper, the 
delta-bar-delta (DBD), the extended delta-bar-delta (EDBD) 
and the directed random search (DRS) were used to train 
the ANN [19]. To improve the performance of ANNs, 
tangent hyperbolic activation function was used. A learning 
algorithm gives the change ∆wji(k) in the weight of a 
connection between neurons i and j. Error is calculated by 
the difference of PSB output and ANN output: 

 

(2)             
ANN PSB
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
   

 

In the next section, these learning algorithms have been 
explained briefly. 
 
5.1. Delta-bar-delta (DBD) algorithm 
The DBD algorithm is a heuristic approach to improve the 
convergence speed of the weights in ANNs [20]. The 
weights are updated by 
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where ( )k  is the learning coefficient and assigned to each 

connection, )(k  is the gradient component of the weight 

change. ( )k  is employed to implement the heuristic for 
incrementing and decrementing the learning coefficients for 

each connection. The weighted average )(k  is formed as 
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Fig. 5. The structure of artificial neural network. 
 
where θ is the convex weighting factor. The learning 
coefficient change is given as 
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where   is the constant learning coefficient increment 
factor, and   is the constant learning coefficient decrement 
factor. 
 

5.2. Extended delta-bar-delta (EDBD) algorithm 
The EDBD algorithm is an extension of the DBD and based 
on decreasing the training time for ANNs [21]. In this 
algorithm, the changes in weights are calculated from: 
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and the weights are then found as 
 

(7)                  ( 1) ( ) ( )w k w k w k      
 

In Eq. (6), ( )k  and ( )k  are the learning and momentum 
coefficients, respectively. The learning coefficient change is 
given as 
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where   is the constant learning coefficient scale factor, 

exp is the exponential function,   is the constant learning 

coefficient decrement factor, and   is the constant 

learning coefficient exponential factor. The momentum 
coefficient change is also written as 
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where   is the constant momentum coefficient scale 

factor,   is the constant momentum coefficient decrement 

factor, and   is the constant momentum coefficient 

exponential factor. In order to take a step further to prevent 
wild jumps and oscillations in the weight space, ceilings are 
placed on the individual connection learning and 
momentum coefficients [21]. 
 

5.3. Directed random search (DRS) 
The directed random search is a reinforcement learning 

approach and used to calculate the weights of ANNs. This 
algorithm also tries to minimize the overall error [22]. 
Random steps are taken in the weights and a directed 
component is added to the random step to enable an 
impetus to pursue previously search directions. The DRS is 
based on four procedures as random step, reversal step, 
directed procedure and self-tuning variance. In the random 
step, a random value is added to each weight of network 
and the error is then evaluated for all training sets as 

 
(10)                         ( 1) ( )bestw k w dw k    

where bestw  is the best weight vector previous to iteration k 

and ( )dw k  is the delta weight vector at iteration k. 
Depending on the error evaluation, the weights are replaced 
with the new weights. If there is no improvement at the error 
in the random step, some random value is subtracted from 
the weight value during the reversal step, that is 
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(11)                   ( 1) ( )bestw k w dw k    
 

In [22], a directed procedure has been added to the random 
step to further improve with reversals. The new weights are 
obtained from: 
 

(12)                  ( 1) ( ) ( )bestw k w dw k dp k     

 
where ( )dp k  is the directed procedure and based on the 
history of success or failure of the random steps. 

Following parameters have been used as ANN inputs: 
 Voltage at shunt reactor bus before switching 
 Equivalent resistance of the network 
 Equivalent inductance of the network 
 Equivalent capacitance of the network 
 Line length 
 Line capacitance 
 Remanent flux 

 
6. Steps of Optimum Switching Angle Estimation 

The steps for optimum switching angle evaluation and 
estimation are listed below: 

1) Determine the characteristics of shunt reactor that 
must be energized. 

2) Calculate the Zii(h) at the shunt reactor bus for h = 
2f0,…,10f0. 

3) Calculate the best switching condition. 

4) Repeat the above steps with various system 
parameters to learn artificial neural network 

5) Test of artificial neural network with different system 
parameters 

 

7. Case Study 
In this section, the proposed algorithm is demonstrated 

for two case studies that are a portion of 39-bus New 
England test system, which its parameters are listed in [23]. 
The simulations are undertaken on a single phase 
representation. 

 

7.1. Case 1 
Fig. 6 shows a one-line diagram of a portion of 39-bus 

New England test system which is in restorative state. The 
generator at bus 35 is a black-start unit. In order to reduce 
the steady state overvoltage of no load transmission line, a 
shunt reactor is connected at bus 19. When the reactor is 
energized, harmonic overvoltages can be produced 
because of its nonlinear magnetization characteristics. 

 

 
 

Fig. 6. Studied system for case 1. 
 

 
Table 2. Case 1 some sample testing data and output 

Delta-bar-delta algorithm: 
V [p.u.] L.L. [km] Φr [p.u.] B.S.A.HI [deg.] B.S.A.DBD [deg.] Error [%] 
1.1153 100 0.8 32.5 32.4 0.3402 
1.1318 122 0.7 61.7 61.1 1.0257 
1.1804 146 0.6 50.9 49.7 2.3755 
1.2593 170 0.5 41.3 42.7 3.4293 
1.1249 195 0.4 82.4 81.2 1.3980 
1.2779 210 0.3 67.3 65.4 2.8731 
1.3425 235 0.2 39.7 39.5 0.4607 
1.3641 250 0.1 74.6 72.4 2.9571 
Extended delta-bar-delta algorithm: 
V [p.u.] L.L. [km] Φr [p.u.] B.S.A.HI [deg.] B.S.A.EDBD [deg.] Error [%] 
1.1153 100 0.8 32.5 32.8 0.8145 
1.1318 122 0.7 61.7 61.8 0.2350 
1.1804 146 0.6 50.9 51.5 1.1601 
1.2593 170 0.5 41.3 42.1 2.0133 
1.1249 195 0.4 82.4 82.0 0.4789 
1.2779 210 0.3 67.3 69.3 3.0373 
1.3425 235 0.2 39.7 40.2 1.1524 
1.3641 250 0.1 74.6 73.3 1.7080 
Directed random search algorithm: 
V [p.u.] L.L. [km] Φr [p.u.] B.S.A.HI [deg.] B.S.A.DRS [deg.] Error [%] 
1.1153 100 0.8 32.5 32.7 0.5804 
1.1318 122 0.7 61.7 59.9 2.8986 
1.1804 146 0.6 50.9 52.0 2.2519 
1.2593 170 0.5 41.3 41.8 1.1280 
1.1249 195 0.4 82.4 82.5 0.0923 
1.2779 210 0.3 67.3 68.1 1.2441 
1.3425 235 0.2 39.7 40.7 2.6036 
1.3641 250 0.1 74.6 73.8 1.0453 

V = voltage at shunt reactor bus before switching, L.L. = line length, Φr = remanent flux, B.S.AHI = the best switching angle obtained by the 
harmonic index, B.S.ADBD = the best switching angle obtained by the DBD, B.S.AEDBD = the best switching angle obtained by the EDBD, 
B.S.ADRS = the best switching angle obtained by the DRS, and Error = switching angle error. 
 
Table 3. Case 2 some sample testing data and output 

Delta-bar-delta algorithm: 
V [p.u.] L.L. [km] Φr [p.u.] B.S.A.HI [deg.] B.S.A.DBD [deg.] Error [%] 
1.1344 108 0.8 71.9 74.2 3.1451 
1.1462 125 0.7 43.7 42.8 2.1630 
1.1907 145 0.6 25.6 25.0 2.4497 
1.2175 175 0.5 60.2 58.2 3.2868 
1.2693 196 0.4 54.9 54.0 1.5823 
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1.2907 215 0.3 74.2 73.7 0.6184 
1.3497 237 0.2 31.4 32.1 2.1587 
1.3871 263 0.2 52.7 51.7 1.8143 
Extended delta-bar-delta algorithm: 
V [p.u.] L.L. [km] Φr [p.u.] B.S.A.HI [deg.] B.S.A.EDBD [deg.] Error [%] 
1.1344 108 0.8 71.9 71.4 0.6343 
1.1462 125 0.7 43.7 43.1 1.4532 
1.1907 145 0.6 25.6 26.4 3.0357 
1.2175 175 0.5 60.2 58.9 2.1873 
1.2693 196 0.4 54.9 54.8 0.1932 
1.2907 215 0.3 74.2 73.2 1.4143 
1.3497 237 0.2 31.4 31.7 1.0569 
1.3871 263 0.2 52.7 52.4 0.5331 
Directed random search algorithm: 
V [p.u.] L.L. [km] Φr [p.u.] B.S.A.HI [deg.] B.S.A.DRS [deg.] Error [%] 
1.1344 108 0.8 71.9 73.5 2.2436 
1.1462 125 0.7 43.7 45.2 3.4857 
1.1907 145 0.6 25.6 26.0 1.7484 
1.2175 175 0.5 60.2 59.3 1.5052 
1.2693 196 0.4 54.9 53.3 2.9021 
1.2907 215 0.3 74.2 74.5 0.4084 
1.3497 237 0.2 31.4 32.1 2.0954 
1.3871 263 0.2 52.7 52.3 0.7743 

V = voltage at shunt reactor bus before switching, L.L. = line length, Φr = remanent flux, B.S.AHI = the best switching angle obtained by the 
harmonic index, B.S.ADBD = the best switching angle obtained by the DBD, B.S.AEDBD = the best switching angle obtained by the EDBD, 
B.S.ADRS = the best switching angle obtained by the DRS, and Error = switching angle error. 
 
 

First, equivalent circuit of this system is determined and 
values of equivalent resistance, equivalent inductance, and 
equivalent capacitance are calculated, i.e., this system is 
converted to system of Fig. 1. In this case, values of 
equivalent resistance, equivalent inductance and equivalent 
capacitance are 0.00291 p.u., 0.02427, and 2.474 p.u., 
respectively. For testing trained ANN, values of voltage at 
shunt reactor bus (bus 19), line length, and remanent flux 
are varied and in each step, optimum switching angle is 
calculated from trained ANN and proposed method. Table 2 
contains the some sample result of test data of case 1. 

 
7.2. Case 2 

As another example, the system in Fig. 7 is examined. In 
the next step of the restoration, unit at bus 29 must be 
restarted. In order to reduce the steady state overvoltage of 
no load transmission lines, the shunt reactor at bus 29 
should be energized. In this condition, harmonic 
overvoltages can be produced. 

 
 

 

 
 

Fig. 7. Studied system for case 2. 
 
After converting this system to equivalent circuit of Fig. 1, 

i.e., after calculating equivalent circuit seen from bus 26, 
various cases of shunt reactor energization are taken into 
account and corresponding optimum switching angles are 
computed from proposed method and trained ANN. In this 
case, values of equivalent resistance, equivalent inductance 
and equivalent capacitance are 0.00792 p.u., 0.0247, and 
1.1594 p.u., respectively. Summary of few result are 

presented in Table 2. It can be seen from the results that 
the ANNs are able to learn the pattern and give results to 
acceptable accuracy. 

 
8. Conclusion 
This paper presents an ANN-based approach to estimate 
optimum switching condition during shunt reactor 
energization. In this approach, a harmonic index has been 
used which minimum value of this index is corresponding to 
the best switching time for the shunt reactor energization. 
The delta-bar-delta, extended delta-bar-delta and directed 
random search has been adopted to train ANN. To achieve 
good generalization capability for developed ANN, it has 
been trained with equivalent circuit parameters. Simulation 
results confirm the effectiveness and accuracy of the 
proposed harmonic index and ANNs scheme. 
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