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Abstract. This paper deals with the application of the General Regression Neural Networks as the rotor fault detectors of the converter-fed induction 
motors. The major advantages of GRNN application in the considered task are simplified design process and high quality of data classification. 
Specific fault symptoms of the rotor damages included in the measured stator current spectrum are proposed as elements of the input vectors of the 
GRNN-based detector. Diagnostic results obtained by the proposed neural detector of rotor faults are demonstrated.  
 
Streszczenie. W artykule przedstawiono zastosowanie regresyjnych sieci neuronowych (GRNN) jako detektorów uszkodzeń wirnika silnika 
indukcyjnego zasilanego z przekształtnika częstotliwości. Najistotniejszymi zaletami zastosowania modeli GRNN w opisywanej aplikacji są: 
uproszczony proces projektowania oraz wysoka precyzja klasyfikacji danych. Zaprezentowano również szczegóły związane z generowaniem 
przesłanek uszkodzeń, będących elementami wektora wejściowego sieci neuronowej. (Detekcja uszkodzeń wirnika silnika indukcyjnego 
zasilanego z przekształtnika przy wykorzystaniu regresyjnych sieci neuronowych). 
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Introduction 

Induction motors (IMs) are nowadays the most widely 
used in electrical drive systems due to their high reliability, 
efficiency and safety, and are frequently integrated in 
commercially available equipment and industrial processes. 
Thus problems of their condition monitoring is very 
important. It can provide useful information so that the 
motor fault, if any, can be fixed at the earliest opportunity, 
without affecting the industrial process requirement. 
Therefore, the main goal is to reduce the maintenance 
costs and to prevent unscheduled downtime of these drive 
systems.  

Recently, needs of the analysis of actual technical 
condition of IM drives caused the great development of 
diagnostic methods and techniques, which could be used in 
the condition monitoring and fault detection [1].  

Traditional diagnostic methods of the IM are based on 
the frequency analysis of the mechanical vibration and 
stator current signals. Usually the Fast Fourier 
Transformation (FFT) is used, but in the last decades the 
Short Time Fourier Transformation (STFT), the Wavelet 
Transformation (WT) and the High Order Transformation 
(HOT) are more and more often applied [1-3]. 

Characteristic harmonics are searched in diagnostic 
signals, as the faults of each part of electrical machine are 
showed by different frequency harmonics. The special 
analyzers of high harmonics or effective computers with 
high-resolution measurements cards are required for the 
precise analysis of diagnostic signals. In PWM (Pulse With 
Modulation) inverter-fed electrical drives, where the 
frequency control of the rotor speed is realized, additional 
problem connected with the changeable frequency of the 
supplying voltage appears, which makes the analysis of 
diagnostic signal spectrum more difficult [4-5]. Problems 
erasing in the fault monitoring and detection of the inverter-
fed induction motor using traditional methods enforce 
looking for a new ways of analyzing the technical state of 
the electrical drive.  

Diagnostic systems use different procedures in a 
diagnostic process, starting from heuristic knowledge, 
through mathematical models to the artificial intelligence 
methods [6]. The diagnosis of the industrial processes can 
be performed using different elements of knowledge base, 
like analytical methods, expert systems, neural networks or 
fuzzy logic reasoning. Faults detection using analytical 
method is not always possible because it requires perfect 
knowledge of a process model. In case of not adequate or 

imprecise mathematical model, false alarms can occur due 
to estimation errors of the systems state variables or 
process parameters [1]. Human knowledge and experience 
are used in the case of the application of the heuristic 
expert system and during the interpretation of measured 
signals acquired on-line in the diagnosed plant. This 
solution is much easier and more useful in comparison with 
analytical methods, but it is difficult for automatic realization.  

On the contrary, the application of artificial intelligence 
methods, like neural networks (NNs) is rather easy to 
develop and to implement. Neural detectors can be 
designed using the data acquired from simulation or 
experimental tests. Neural models are one of the best 
methods for detecting nonlinear relations between patterns 
also in the presence of measurements noises and 
disturbances in analyzed data [7]. The main advantage of 
such solution is obtaining on-line information about the type 
and the „size” of a fault, without developing very 
complicated mathematical models.  

Recently implementations of NNs are very popular in 
diagnostics of electrical machines. It results from very good 
abilities of NN in the generalization and classification of 
data, as well as from effective training of the network for 
solving of complex tasks. NNs work in diagnostics as 
detectors of damages [6, 8-15].  

The most solutions described in technical literature are 
based on multilayer perceptron MLP [6, 8-12]. One should 
mark, that the training and testing process of MLP network 
requires long time and great computing power, which are 
disadvantageous features appearing at the stage of the NN 
detectors’ design. Moreover the problem associated with 
the selection of the NN structure appears, having the 
significant influence on the quality of the diagnostic task 
realization. So the special algorithms for optimizing the NN 
structure are applied which much complicate the process of 
training. Also the training algorithm requires some 
parameters to be chosen to obtain the proper results.  

The other structures of NN were also tested in the fault 
diagnosis of induction motors (mainly for rotor bars or rolling 
bearings faults), like Kohonen, RBF networks [6], wavelet 
artificial neural networks [13], probabilistic neural networks 
[14], dynamical neural networks [15] and SVM [18]. The 
most often described application of NNs in diagnostic is 
feature selection. 

In this paper the possibilities of application of general 
regression neural networks (GRNN) in the detection of rotor 
bars faults of the converter-fed induction motor drive are 
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tested. This special type of NNs is characterized by very 
fast training process, realized automatically [16]. Significant 
simplifying in the design process of GRNNs, combined with 
good precision of data classification, even in the presence 
of disturbances in inputs signals, makes them appropriate 
for diagnostic process of electrical machines. Applications 
of GRNNs for classification of defects in electrical motors 
are rarely met in scientific papers. However beneficial 
properties of such detectors were mentioned earlier in the 
analysis of symptoms obtained on the base of mechanical 
vibrations of rotating machines [17].  

This paper presents application of GRNN for the rotor 
faults diagnostics of the converter-fed induction motor, 
based on stator current analysis. It should be mentioned 
that diagnostic tests made for the converter-fed induction 
motor drives, where fault symptoms are disturbed by 
harmonics resulting from the modulation of the converter, 
are not very popular in the technical literature. Neural 
models presented in this paper can detect the damage 
appearance in the rotor (broken bars) and moreover exact 
degree of the damage (number of broken bars). 

The paper is divided into five sections. After the 
introduction part, the issues associated with the realization 
of neural detectors of broken rotor bars of the induction 
motor are presented. Next the method of data generation 
with symptoms of motor defects is described. In the third 
section some basic issues for GRNN are presented. Then 
the designed detectors of rotor faults are tested basing on 
the measurement data obtained in the laboratory setup 
containing the converter-fed induction motor with 
exchangeable rotors (with different number of broken bars). 
The short conclusion summarizes the presented approach 
and obtained results.  
 
Rotor fault symptoms in the stator current  
 The spectral analysis of the stator current is one of the 
most often applied methods (MCSA method) of invasion-
less detection of the rotor asymmetry caused by broken 
bars [1-3, 6, 18-20]. Choice of this physical variable allows 
getting good diagnostic results without the necessity of the 
expensive measurements and thus without expansion of 
laboratory setup and additional cost. Magnitudes of 
harmonic components of the stator current with the 
following, characteristic frequencies are being observed 
under the rotor fault: 

(1)   
sp fksf )21(   

where: 
fs – fundamental frequency of the stator voltage,  
s – motor slip, k = 1,2,3... 
The value of motor slip is calculated as follows: 
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where: s – synchronous angular speed, m – the rotor 
angular speed.  
 Increasing magnitudes of the components with 
characteristic frequencies are symptoms of the rotor defect, 
however evaluation of their level can give an information 
about degree of damage. One should notice that changes 
of the load torque can also influence the motor slip value, 
what causes that load changes disturb analysis of suitable 
harmonic magnitudes of the stator current. These relations 
can hamper the diagnostic process of the motor. In a case 
of tests realized with slight load, slip and fundamental 
frequencies will cover each other. As a result, the diagnosis 
of the rotor damages will be incorrect. The solution for this 
problem is using the Park vector of the stator current as 

additional signal in the diagnostic procedure [18, 19]. The 
stator current vector can be described easily by phase 
currents of the stator winding: 
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The stator current vector of the induction motor with 

healthy rotor can be transformed to a stationary coordinate 
system (-) according to equations: 
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where: s
mI - magnitude of the stator current. 

Modulus of this spatial vector is calculated as: 
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For the symmetrical healthy rotor this modulus has 
constant value. With the assumption that only fundamental 
component (fs) of the stator current is analyzed, we obtain: 
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In the case of the rotor fault, harmonics with 
characteristic frequencies appear in the - current 
components, as presented bellow: 
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where: 
21, pp II - magnitudes of components with 

frequencies: 
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After substitution of (9) and (10) to (6) we obtain: 
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It can be seen that stator current harmonics cause the 
appearance of other specific components in the modulus of 
the stator current vector, with frequencies 2sfs and 4sfs 
respectively. They are very good symptoms of the rotor 
faults, as these harmonics are much far away from the 
fundamental current harmonic than slip harmonics (1).  
In the diagnostic procedure three main tasks can be 
distinguished: 

 the data acquisition which is focused on getting the 
database with symptoms of motor defects; 
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 the classification of the symptoms; 
 the diagnosis of the fault type and size. 

The above relationships (1) and (12) describing the 
characteristic frequencies of the stator current in case of 
rotor damages enable the calculation of fault symptoms for 
design of the input vectors for detectors based on NNs. 
 
General Regression Neural Networks 

In described case, detection of induction motor 
damages using neural networks is concentrated on analysis 
of database containing symptoms of faults appearing in 
internal structure of the machine. It is possible to assume 
that in analyzed dataset two subsets X and Y can be 
separated. One of them – X is related to symptoms of 
faults, the second – Y corresponds to different degrees of 
damages in several cases. So it should be noted that, 
knowing the relationship between the two subsets 
(described by a function or using some other model), it is 
possible to determine elements of one of them based on 
known data set. In the presented situation, it becomes 
possible to evaluate the symptoms of damage and to obtain 
clear information about the state of the machine. 

In theory of statistics, issues related to searching of data 
dependencies usually can be realized with regression 
solutions. For each elements of data set {(xi,yi)}   
regression model can be described as follows: 
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where: i error of observation (from normal distribution with 
zero mean value and with constant variance), f – regression 
function,  – regression coefficient, n – number of elements 
in dataset. 
 One of the examples, most often described in literature, 
is related to nonparametric regression, where form of the 
regression function describing dependencies between 
variables is assumed as not clearly defined [21]. In many 
solutions this function is estimated by the Naradaya-Watson 
model [22]. It is assumed that the weights of the estimator 
for the record xi from dataset, near the element x from the 
data space are described by the equation: 
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where: K(u) kernel of the function f, h – width of a window 
affecting smoothness of the function. 

 Estimated regression function is determined using 
following expression: 
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The most popular kernel function is Gaussian curve, 
however in the literature other characters of applied 
functions can be found [21]. Some papers show the 
feasibility of the realization of the regression assumptions 
with parallel structure of neural network [16]. Several 
kernels of regression correspond to activation functions in 
neural network. In the case analyzed in this paper, 
Gaussian curve is assumed. Data analysis is realized in 
relation to points from the data space X (14), which 
correspond to the centers of activation functions in several 
neurons. Location of the input elements with respect to the 

centers of individual neurons is determined using the 
formula: 
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According to above assumption the regression function 
(14)-(15) is described, in this case, by the equation: 
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where:  - coefficient shaping the width of the Gaussian 
function.  
 Regression neural networks have feedforward structure, 
therefore exist only one fixed direction of the data flow 
between different layers of neural network (Fig. 1). The 
structure of network contains connected neurons, arranged 
in layers: input, output and hidden. Number of nodes in 
several layers depends on a size of processed data and 
assumed number of inputs and outputs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. The structure of  GRNN neural network 
 

 Analyzed NN consists of four layers. Below an algorithm 
showing software implementation of GRNN and assumed 
method of weights selection are described. The initial 
processing step involves the formation of the input vector 
for the hidden layer. At this stage of neural processing the 
Euclidean distance between the vector of input values and 
the centres of radial functions is determined: 
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where X = [x1, x2, x3,...., xN]T is input vector, Cj – vector with 
centers of each neurons.  
Next the obtained value is scaled, and achieved results (18) 
are multiplied by  bias value, which is constant for all nodes: 
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The level of bias is determined using the following equation: 
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where:  - scaling coefficient. 
The results of the processing described above are input 
patterns of the activation function calculated according to 
the equation: 
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Achieved results are elements of the output vector of the 
hidden layer Lh. In summation layer calculations based on 
vector Lh and weights values are realized: 

(22)   
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Then, the resulting signals are processed to the decision 
layer, where following calculation are realized: 
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where: q – number of neurons in the hidden layer. 
 In training process of presented structure of NN, location 
of centers C of input neurons and weights values W of 
summation layer are determined. For this purpose, in this 
application the following method was used for determination 
of the parameters of the neural network: 

 the centers of radial neurons are obtained by 
rewriting the values of the input training data, 

 the weights are taken as the output values from the 
data set used for training. 

It should be noted a very short duration of the whole 
process (one-pass training method), in contrast to the 
algorithms used for training of classical NNs, mostly based 
on calculation of the derivatives of the objective function 
according to the weights. In addition, there is no necessity 
of initial weight values selection, often assumed as random 
numbers; it means full repeatability of the results.  
 
Generation of input vectors for GRNN  
 In the diagnostic process of the IM the following stages 
can be distinguished: 

 measurements of physical quantities using special 
sensors, 

 preprocessing of measurement data for fault 
symptoms extraction, 

 classification of the obtained data and fault detection 
with NN. 

The converter-fed induction motor of 3kW nominal power 
and nominal speed nN = 1400rev/min was tested. The DC 
motor mechanically coupled with the tested IM was used as 
a loading machine. For research purposes the testing IM 
was equipped with suitable number of specially prepared 
rotors with artificial faults. In the Fig. 2 the illustrations of the 
squirrel cage rotors with damaged rotor bars are shown.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Rotors with different number of broken bars (8 and 4) (a) and 
zoom of the 8 broken rotor bars (b) prepared using spark erosion 
machine 
 

The converter-fed drive system has been controlled 
using simple scalar U/fs method. Measurement data have 
been acquired for different supply frequency reference 

values (reference speed) in the range (5–50 Hz) and five 
values of the load torque TL in the range (0–1.25)TLN. 
Measurements were performed using LEM current sensors 
and NI PXI-4461 data acquisition card.  
 For stator current data processing the FFT transform 
has been applied. Providing the right resolution for 
frequency is necessary for correct separation of 
characteristic components in the stator current spectrum. In 
the analyzed case the measurements were made with the 
following resolution: df = 0.048 (219 samples in the time 
sequence 20.97s) in the range of 25kHz.  
 Based on realized measurements and data processing 
the following diagnostic symptoms of the rotor fault have 
been proposed: 

 fs      – supply frequency, 
 Imax – magnitude of the stator current vector, 
 sl1 – left slip component close to 1st harmonic of the 

stator current, 
 sr1 – right slip component close to 1st harmonic of the 

stator current,  
 sl5 – left slip component close to 5th harmonic of the 

stator current, 
 sr5 – right slip component close to 5th harmonic of the 

stator current, 
 sl7 – left slip component close to 7th harmonic of the 

stator current, 
 sr7 – right slip component close to 7th harmonic of the 

stator current, 
 slr1 – sum of components sl1 and sr1, 
 slr5 – sum of components sl5 and sr5, 
 slr7 – sum of components sl7 and sr7, 
 p1, p2 – fault components extracted from the modulus 

of the stator current spatial vector, related to its 
magnitude Imax, 

 p12 – sum of components p1 and p2. 
All slip harmonics were related to the magnitude of the 
fundamental harmonic of the stator current. 
 Five different input vectors (set 1 – set 5) for NN were 
formed, based on those diagnostic symptoms. These 
vectors contained following sets of signals, respectively: 

 set 1:  fs, Imax, sl1, sr1, p1 
 set 2:  fs, Imax, sl1, sr1, slr1, p1, p2 
 set 3:  fs, Imax, sl1, sr1  sl5, sr5, sl7, sr7 
 set 4:  fs, Imax, sl1, sr1, sl5, sr5, sl7, sr7, p1, p2 
 set 5:  fs, Imax, sl1, sr1, slr1, sl5, sr5, slr5, sl7, sr7,slr7, p1, p2, p12. 

 
Results  
 Data sets for training and testing purposes of GRNN 
detectors were obtained from experimental measurements 
of the motor with exchangeable rotors, with different degree 
of damages. An extensive database, containing 900 
records, with 14 diagnostic features each (shown above) 
was created. The data sets were divided into three parts; 
two of them were used for training process, the third was 
used for testing of the designed detectors. So, resulting 
training sets contained 600 input records; while testing sets 
had 300 records. Designed neural detectors were tested 
according to the cross-validation method. GRNNs were 
trained repeatedly, for all combinations of subsets of 
teaching data; in every case the last part of data was used 
in the process of testing. At the output of the network the 
number of broken rotor bars should be given.  
 To compare the achieved results, a percentage 
effectiveness of the detected number of broken rotor bars in 
the examined number of measured samples was appointed. 
The quality assessment was taken from the average value 
of the calculated effectiveness of the fault type detection.  
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Table 1. The quality of the broken bar detection by GRNN for 
different input vectors and sets of training data; results obtaining for 
testing data 

 = 1 

 
Training 
data_12 

Training 
data_13 

Training 
data_23 

mean 
value[%] 

set1 29.7 28.3 26.7 28.2 

set2 27.7 29.0 29.3 28.7 

set3 83.7 88.3 85.3 85.8 

set4 86.7 91.0 87.0 88.2 

set5 84.7 92.0 86.3 87.7 

 
 In the Table 1 testing results for all combinations of 
training subsets, used in training and testing process of the 
designed GRNN are presented. For detectors with the 
greatest efficiency a graphical presentation of achieved 
results is shown in Fig. 3. The direct results given by 
GRNN-based detector are shown in Fig. 3a, while in Fig. 3b 
the rounded values are presented.  

 a) 

 
 b) 

 
Fig.3. Graphical presentation of GRNN detector results for data-set 
5 ( = 1) (for testing data): direct NN calculation results (a), 
rounded results (b) 
 

Best results were obtained for the most extended input 
vectors of GRNN – set 4 and set 5. In the case of set 1 and 
set 2, satisfying accuracy of correct detections was not 
obtained, because the input vector did not contain the 
sufficient information about fault symptoms describing the 
rotor damage.   

 Due to almost negligible difference in the accuracy 
obtained with those two last sets of NN input vectors (set 4 
and set 5), it could be said, that the shorter vector (set 4) is 
enough and should be used for the detector based on 
GRNN, due to a greater simplicity of the NN structure.  
It should be mentioned that a very good accuracy of the 
fault level detection with GRNN was obtained in the 
presence of the load torque change and inverter supply of 
the IM, even for the incipient fault (one or two faulted rotor 
bars) This last issue is especially important, because in the 
case of electrical drives supplied by converters, fault 
symptoms connected with characteristic harmonics of the 
stator current are disturbed by harmonics connected with 
the converter modulation.  
 For evaluation of generalization abilities of designed 
GRNN detectors, analogical results are presented in 
Table 2, but these are obtained for training data. Generally, 
it is possible to observe better results than before, but it is 
important that calculations of GRNN-based detectors for 
different testing data are very accurate also. 
 
Table 2. The quality of the broken bar detection by NN for different 
input vectors and sets of teaching data, results obtained for training 
data 

 = 1 

 
Training 
data_12 

Training 
data_13 

Training 
data_23 

mean 
value[%] 

set1 27.5 28.67 29.83 28.67 

set2 30.0 30.33 31.83 30.72 

set3 96.5 96.67 97.33 96.83 

set4 98.67 97.5 98.33 98.17 

set5 100.0 99.67 99.67 99.78 

 
Results presented in Fig. 3 are obtained for the GRNN 

parameter  = 1. This parameter highly influences the 
detection quality. So in the next stage of tests, the influence 
of this spread parameter   on the detection quality was 
checked, and the obtained results for the data set 4 are 
shown in Fig. 4.  
 Basing on these results it can be concluded that the 
reducing of the  value causes the increase in the accuracy 
of the fault detection. It is caused by the fact that for smaller 
 values a greater number of networks input values exist, 
for which neurons in the radial layer are operating in the 
range of greater changes of the output value; so the 
greatest effectiveness of the network action is obtained. In 
the other way, with reducing of the parameter  the most 
accurate calculations in pattern layer are obtained for bigger 
compatibility between the input data and centers of the 
radial functions. In such case the activation function is very 
steep. The precision of detection, realized by NN is 
increasing, but on contrary – the generalization abilities are 
lowering. Concluding, in presented tests selected value of 
parameter   should be chosen depending on the obtained 
precision of the detection and also in a context of the 
generalization properties. The similar tests with different   
values were carried out for the input vector from the set 1, 
which is minimal from the point of view of the information 
used in NN training. 
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 a) 

 
 b) 

 
 c) 

 
Fig.4. Graphical presentation of GRNN detector results for data set 
4 and chosen  values (for testing data): (a –  =0.5, b –  =0.1, c 
–  =0.05); rounded values 

 
 In the case of GRNNs their structure considerably 
depends on the dimension of training data. Based on a 
smaller input vector and simplified topology of NN, the 
reconstruction of the output data is more difficult. Therefore 
for the NN with the smaller structure better fitting to training 
data is required. Results for neural detectors with this 
minimal input vector information and with different values of 
spread parameter   are presented in the Table 3. With 
increasing  value, simultaneous increase of the detection 
quality of neural detectors working with the shortest input 
vector (set 1) is simultaneously observed. The interesting 
phenomenon was observed for the detector developed for 
the spread parameter  = 0.01. During the test algorithm 
returned the warning about dividing by zero. This error in 
neural calculations for small values of spread parameter  
is resulting from the specific structure of GRNN. Input 
values of radial neurons are Euclidean distances between 
input and centers scaled by the value 0.8326/.  

Table 3. The quality of the broken bars detection by GRNN with 
minimal input vector and different  value 

Training data_12, set1 
 =1 29.7 
 =0.5 45.3 
 =0.1 81.3 
 =0.05 87.0 
 =0.01 67.7 (Warning: division by zero) 

 
If the value of  is very small, then values of biases are 

very big. Scaling the input signal of nodes in the pattern layer 
in such a way causes that output values of individual neurons 
are accepting nulls. In the summation layer dividing by sum of 
output values from previous layer is realized, and then the 
warnings about errors in calculation are appearing. Thus the 
proper selection of the spread coefficient is important issue 
and suitable compromise between this value and size of the 
input vector must be done in the case of GRNN application 
for fault diagnosis of the induction motors. 
 Another issue, important for practical implementation of 
the presented diagnostic method, can be observed for all 
graphical presentations shown in Fig. 3 and Fig. 4. Besides 
very high diagnostic efficiency, there is no indication of a 
“healthy rotor” for existing broken bar cases. 
 
Conclusions 
 In this paper a new idea of using GRNN structure for rotor 
fault detection of converter-fed induction motor is proposed 
and results of practical implementation are presented. There 
are many papers presenting classical MLP neural networks in 
diagnostics of electrical machines. However just a few works 
propose the application of GRNN in the field of rotating 
machines, not for the electrical faults of induction motors. 
Presented high quality results and simplified design process 
lead to the conclusion that GRNN networks can be an 
alternative to classical MLP networks, widely used before in 
the diagnostic task of the induction motors.  
 A simplified process of the detector design and training 
is a most valuable advantage for this type of NN. The only 
design parameter is the spread s of the RBF activation 
function. The suitable choice of this value is very important 
from the point of view of the detector accuracy. Even for 
very short input vector (like in data set 1) and thus simple 
structure of NN, a good accuracy can be obtained, when 
spread s  takes a very small value. But on the other hand, 
for very small s  coefficient some errors, related to the 
precision of calculations, are observed. So, from the 
practical point of view is better to choose the more 
extended input vector of the GRNN-based fault detector 
and use bigger value of the spread factor.  
 Very good results for the rotor fault classification of the 
induction motor in the presence of the load changes and 
converter supply harmonics are obtained. A possibility of 
detecting the degree of damage (number of broken rotor 
bars) is an additional advantage of the proposed GRNN-
based detectors. 
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