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Sliding mode control of the DC drive with relative degree higher 
than one 

 
 

Abstract. Certain problems concerning the higher order sliding mode (SM) controller have been presented. SM methodology has been applied to 
DC drive system. The control system consists of two control feedbacks in a cascade structure – conventional PI current controller and SM position 
and velocity controller. Due to the relative degree of sliding function is higher than one, the second order sliding controller has been suggested. To 
verify the theoretical results, simulation studies have been carried out. 
 
Streszczenie. W artykule przedstawiono zagadnienia syntezy regulatora ślizgowego wyższego rzędu. Metodę zastosowano dla układu napędowego 
prądu stałego o kaskadowej strukturze regulacji. Zaproponowano konwencjonalny PI regulator prądu, natomiast regulator ślizgowy został określony 
dla pętli regulacyjnej położenia i prędkości kątowej. Stopień relatywności dla funkcji ślizgowej jest większy od jeden, zastosowano więc regulator 
ślizgowy drugiego rzędu. Metodę zweryfikowano za pomocą badań symulacyjnych. (Sterowanie ślizgowe w napędzie pozycyjnym prądu stałego 
przy stopniu relatywności większym od jeden). 
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Introduction 

Recently, much attention has been paid to the problem 
of designing feedback controllers for uncertain dynamical 
systems. It is very difficult to develop accurate mathematical 
models for many physical plants. There are inevitable 
uncertainties in many constructed models. These 
uncertainties result from imperfectly known structure or 
parameters of a plant as well as from unpredicted 
disturbances such as measurement noises and errors. 
Some assumption concerning uncertainties (matching 
condition, upper bounds on the norm) and the plant 
property (minimum-phase-ness) are usually made. At 
present, several basic approaches to uncertain nonlinear 
systems are available. It is suggested to solve the control 
problem with one of the following methods: adaptive control 
[1,2], robust control i.e. H control [3,4] and variable 
structure control (VSC) [5-10]. In the first one, the 
stabilization and the tracking goals are achieved during the 
parameter adaptation process, the self-tuning regulators 
and the learning systems. The H control problems are 
defined in the frequency domain, whereas the VSC method 
in the time domain. They both require some information 
about the bounds on uncertainties, but have different 
meaning. These methods allow nonparametrised 
uncertainties and neglected dynamics, too. Although each 
of these methods offers more or less general solutions for 
uncertain systems, the VSC method has been chosen here 
for control synthesis of angular position () and velocity () 
in a certain drive system, for example to the positioning of 
the robot arm. The rigid model of the robot arm is obviously 
incorrect and can be treated as the source of uncertainties 
for the control system. On the other hand, the robot 
mechanical system ought to be provided with properly 
chosen drive system. The drive system stands for itself 
inaccurate modelled dynamics because of variable 
parameters of its electrical circuits. Moreover, the variable 
load torque coming from a robot arm can be regarded as a 
disturbance and a kind of nonparametrised uncertainty. 
Thus, as an example, DC drive system is taken into 
consideration in terms of suitability for the robotics.  

The VSC method has been developed in the last two 
decades [8,10]. Higher order sliding mode control has been 
introduced to the control theory. New VSC method gives 
new possibilities of the control. This work is an attempt to 
verify this method for the selected object by means of 
simulation research.The paper is structured as follows. The 

first section presents the theory of the sliding mode control 
in which the 1st and the 2nd order sliding dynamics are 
distinguished. The following section presents the control 
structure of the DC drive with a current controller and a 
sliding controller defined in the (,) – phase space. 
Because of the relative degree between control as an input 
and sliding function S(, ) as an output is higher than one, 
the control synthesis in conventional meaning is not 
possible. For this reason, to realise the given reference 
trajectory S(), the second order sliding mode controller is 
suggested. The next section deals with the second order 
sliding control including additional assumptions such as 
matching conditions for parameter uncertainties and bounds 
on the norm of uncertainties for the variable load torque. 
The last section presents the simulation results of the 
designed control system.  
 
The theory of the sliding mode control 

The variable structure concept consists in defining such 
a surface in the state space, so that the system restricted to 
this surface has suitable dynamical properties. The 
feedback control law must guarantee that this surface will 
attract the system trajectory and moreover the trajectory 
reaching it will remain in its vicinity. Such a goal is realised 
by discontinuous control law. The control function has 
discontinuity on the mentioned surface called in the 
traditional meaning switching or sliding surface. The theory 
of VSC [6] can be interpreted in differential geometric terms, 
in general, for nonlinear control systems [11]. Then the 
switching surface stands for the output-nulling submanifold 
for the control system. The constrained dynamics 
corresponds to the zero dynamics of the system. The ideal 
sliding dynamics is governed by manifold invariance 
conditions, etc.  

The starting point of the whole analysis of the sliding 
motion, in this paper is the notion of relative degree of the 
system. From then on, the subject of our research is single-
input single-output system of the form: 

(1)       

)t,x(Sy

)t(w)x(p)x(u)x(g)x(f)x(f
dt

)t(dx

=

+++= δ
  

where: x is a state variable,  x  X , X  is an open set in  n,  
  f, g, p - are smooth vector fields locally defined on X with  
g(x)    0,  x  X,   u(x): X    is the control input function; 
w(t) is a scalar external disturbance signal affecting the 
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system behaviour, and represents a state independent, 
unstructured uncertainties. The vector f(x) represents 
parametric uncertainties of the nominal vector field f(x). The 
output function S : X   is a locally smooth function of 
the state variable and in certain cases also of the time. The 
ideal dynamics of the nominal system (1) is independent of 
the perturbations like f(x) and w(t) if the matching 
conditions are satisfied: 

 (2)      f(x)    span{g(x)}     p(t)   span{g(x)} 

 Definition 1. System (1) has at point x relative degree r 
with respect to the vector field g(x) if : 

 (i)  Lg L
k
f S(x(t))  =  0  for all  x and all  k < r -1 

 (ii) Lg L
r-1

f S(x(t))  0   

where: Lg S(x) is the Lie derivative of a real-valued function 
S(x) along a vector field g. 

If the relative degree is equal r, the rth-derivative of the 
output function y(t) with respect to time is given by (3) 

(3)      y(r)(t) = Lr
f S(x(t))  +  Lg L

r-1
f S(x(t)) u(x)  

It is seen that, the y(k)(t) for (0  k < r ) is independent of 
u(x). When Lg L

k
f S(x) = 0  for all x and all k  0, then the 

output of the system (1) is not dependent on any input  u(x), 
for all x and t. For example, if the relative degree equals 2, 
the derivative of the output function y(t) with respect to time 
is directly: y(1)(t) = Lf S(x(t)), because  Lg S(x(t)) = 0. Changes 
in the value of function y are not possible by any control 
input  u(x) directly. 
 Similar reasoning can be carried out for a disturbance 
signal w(t). If Lp S(x(t)) = 0 i.e, relative degree rp of the output 
function S(x) with respect to vector field p(x) is greater than 
one, so this is a good case because S(x) is independent of 
the disturbance signal w(t). 
 The level set  S-1(0) = { x  X : S(x) = 0 }  defines a 
smooth (n-1)-dimensional manifold SS of constant rank. This 
manifold is usually called the sliding manifold. By 
assumption, the dynamics of system (1) is constrained to 
such manifold. 
The variable structure control law is a feedback control law 
on the manifold SS and it is determined as follows: 

(4)    












 uu

)x(S)x(u

)x(S)x(u
)x(u

0for

0for    

It means that the crossing of the SS from each side of SS  is 
guaranteed by use of the switching method (4). The 
feedback control u(x) has discontinuous nature with respect 
to variable S(x). In order to a sliding motion could take place 
on SS, the trajectory of (1) starting from arbitrary points of X, 
must reach this manifold and then lasts in its vicinity. 
Hence, there are two problems: 1o the reaching and 2o the 
sliding problem, both must be solved to realise the sliding 
mode control. The reaching problem can be solved by 
setting the control (state space trajectory) outside the 
‘sliding’. It means that the trajectory of the system with 
continuous control u(x) should get SS after a finite time 
interval. This problem, in general, has been solved as a 
stabilisation problem. On the other hand, the sliding motion 
locally exists in a direct vicinity of SS whenever (5) is 
fulfilled. 
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Ideal sliding dynamics, without crossing of SS, is defined by 
manifold invariance conditions [6] for unperturbed system 
(1). They are as follows: 

(6)    
0

0and0

eq



 )x(SL

)x(S)x(S

ugf


 

The control variable ueq (named equivalent control) is a 
smooth function for which every point of the trajectory (1) 
starting from the SS does not leave it. The control ueq is well 
defined [6] whenever it exists and it is uniquely determined 
from (6). This indicates that LgS(x)  0 (relative degree 
equals one) and further, vector field g cannot be tangential 
to the sliding manifold SS This fact underlines that trajectory 
(1) along  y=0 exists, but does not exclude the capability of 
control by any other kind of the input  u(x). 
 In the case of the selected output function y=S(x) has 
relative degree higher than one, the relation Lg S(x(t)) = 0 
holds, u(t) does not changes output y. (Then also the 
equivalent control ueq does not exist). To overcome such 
difficulties and solve the ‘sliding problem’, an auxiliary 
output function should be find for which the relative degree 
equals one and simultaneously zeroing of S(x) is possible. 
The simplest (trivial) way is definition of the (r-1) derivative 
of S(r-1)(x) as output y, assuming that the other derivatives for 
k= 0,1,…, (r-2) too, equal zero. 
 The output function y=h(x) that always satisfies the 
‘relative degree condition’ can be as well selected as a 
function (7):  

(7)   h(x) = S(r-1)(x) + cr-2 S
(r-2)(x) + ...+ c1S(1)(x) + c0S(x)   

 where  ck  for k=0,1,..., r-2 are constant coefficients. 

The function (7) can define the new sliding manifold h-1(0), 
denoted by Sh, and then, the equivalent control for output 
h(x) exists and is computed from (8): 

(8)          
)x(hL

)x(hL
)x(u

g

f
-eq(2)   

Suitable choice of the parameters ck defines asymptotically 
stable movement restricted to the manifold Sh.  
It is convenient to write the system dynamic equation in 
normal form coordination (9), what for output function y=S(x) 
with relative degree r could take the form: 
(9) 
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where: 

n

1r

r

1

z

...

z

ξ

z

...

z

θ


       a(,)  0 

and  for an equilibrium point  

       0and000  ),(q),(b),(),( ξθξθξθ . 

According to previous assumptions about the zeroing of S, 
the problem of the zeroing output z1 by means of an 
auxiliary function h(x) can be expressed by the zero 
dynamics problem. The zero dynamics for system (9) is 
described by following conditions (10): 
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(10)     
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If the (t) is being identically zero, the behaviour of (t) is 
governed by the differential equation  

(11)             ))t(,(q)t(ξ ξ0  

If the output y(t) has to be zero, then necessarily, the initial 
state of the system (9) must be set to values (0)=0, while 
(0)= 0 can be chosen arbitrarily. 
 When the sliding mode takes place on the manifold Sh , 
the original output  y = S(x,t) = z1 and its first (r-1) derivatives 
asymptotically tend to zero (9). Initial conditions mentioned 
above, stand for the points belonging to the manifold Sh . 
 However, the use of the auxiliary function (7) implies two 
possibilities of realising the dynamics (10). One of them is a 
measure of all the state variables, and the second one is 
availability of (r-1) derivatives of the original output  y=S. 
 This brief introduction to the VSC should be 
complemented by higher order sliding mode (HOSM) 
definition. There are several definitions. The definition 
introduced by Fridman and Levant [8] will be used: 

 Definition 2. When the first r successive total time 
derivatives of S(x,t) are smooth functions, and a set given by 
the equalities (12) 

(12)   r1,...,=k0==== 1)-(k1 for)t,x(S...)t,x(St)S(x, )(  

is locally an integral set in Filippov’s sense, then the 
movement mode existing on this set is called a sliding mode 
with sliding order (r) with respect to the constraint function 
S(x,t). The rth total time derivative S(r) is not a continuous 
function of the state variables or does not exists. 

 From the above definition we conclude that output 
function h(x) and its components, as smooth derivatives of 
S(x) determine the HOSM condition (12) with zero dynamics 
(10). The sliding order not always coincides with the relative 
degree notion and then the control u(x) is discontinuous 
function on sliding manifold. This is the case, when first 
order sliding motion cannot be affected by any control 
function. Then second order sliding mode is realised on the 
manifold S=S(1)= 0 and S(2) is discontinuous. Actually, the 
HOSM method is taken into account for arbitrary relative 
degree, not necessarily higher than one, but mainly to 
reducing the ‘chattering’ effects [10]. 
 
DC drive control system 
 There are different, more or less precise models of dc 
drive. Here, the separately excited motor is fed from three-
phase converter. The converter is considered as a black 
box with certain gain, perhaps constant. The commutation 
effect is neglected in the dynamic model. Hence, almost 
ideal mathematical model of the motor is obtained as [12]: 

(13)   

)t(
dt

)t(d

)t(u
L

)t(
L

)t(i
L
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dt

)t(di

)t(M
J

)t(i
Jdt
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e

ω
α

ω
ψ

ψω







1

1

 

where: (t) and (t)  are the angular position and velocity of 
the motor shaft, respectively, e is the exciting flux linkage, 
i(t) and u(t) are the armature current and voltage suitably. R 
- generalized resistance and L – total inductance represent 
armature circuit parameters. J is a moment of inertia of the 

rotor and mechanical load (for example of a robot arm). 
Mm(t) is the load disturbance torque. The parameters R and 
J constitute parameter uncertainties, while the torque Mm(t) 
stands for unstructured uncertainties; e is by assumption 
constant. 
 Most frequently, the synthesis of the control system for 
the motor drive consist of creating, at least two feedback 
controllers (cascade control) – armature current and 
angular velocity (sometime angular position as well). 
Hence, the first stage of this task is the designing of an 
armature current controller in a closed loop system.  
Typically, the current controller is of PI type with two 
adjusted, according to selected criterion, parameters KR and 
TR. We have chosen as a criterion the functional Q involving 
function e(t) and its derivative in the square. This functional 
is presented in (14). The variable e(t) corresponds to the 
current error in the control loop. Constant Tz is a weighting 
factor. We look for a weak local minimum of the Q:  

(14)    dt))t(eT(t)(eQ z

t
22

0

2
k

      

with boundary conditions shown in (15): 

(15)    e(t)  C2
[ 0  ) ,   e(0)  0,  e(tk) = 0 ,  tk = var 

The extreme of the functional Q must satisfy the Euler-
Lagrange equation subjected to the conditions (15). The 
only real solution of min Q with (15) is a function e(t) : 

(16)    )exp(- 0)
zT

t
(e)t(e       and    tk =   

Therefore, the current control subsystem can be identified 
as the following transfer function (Fig.1): 

(17)    maxmax IKUand
sT

K

)s(U

)s(I
)s(G 


 zz

z

z

z 1
   

Reference signal Uz must be constrained and designed with 
respect to the gain of the feedback loop and other 
parameters of the controller and motor. As results from (17) 
the time derivative of the armature current is constrained, 
what is described by inequality (18) 

(18)     
z

=
T

I

dt

)t(di max
max    pIn   

where  In - rated current,  p – multiplicity of the rated current 
per one second.  

Current controller synthesis based on the performance 
index Q is preferred to guarantee of the current and its time 
derivative limiting without special individual limiter. Control 
system retains the linear characteristics, not enters into the 
saturation. The example of the dc motor data and the 
calculated current controller parameters are found at the 
end of this paper (see Appendix). 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Structure of the control system 
 

Drive system (13) involved the current corrector can be 
described in the form of the equations (1). Appropriate 
variables and vector fields are as follows: 
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   x(t) = [ (t) (t) i(t) ]T        u(t) = Uz(t)        w(t) = Mm(t)    

(19)   
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The next stage of the control synthesis is the design of the 
position and velocity controller. 
 
Second order sliding controller for angular position and 
velocity 
 This controller is designed based on the sliding mode 
method. So the dynamical equation (19) should be 
supplemented by output function  

(20)      S(, )= c(t) +(t) , c > 0 - constant coefficient. 

This simplest linear function, describes an asymptotically 
stable system trajectory in the subspace (, )  X. For 
system (19) with output function (20) the relative degree r 
with respect to Uz equals two, and therefore the function S(x) 
cannot be directly changed by this control input. The 
relative degree rp with respect to w(t) is equal to one, so that 
this disturbance will cause changes in function S. Moreover, 
the matching conditions (3) for input w(t) are not satisfied. 
This yields finally the sliding motion disturbed by the load 
torque Mm(t). Matching conditions for the parametric 
uncertainties f(x) are satisfied only for the armature circuit 
parameters included in the time constant  Tz  i.e.  R, L, KP .  
 Because of r=2, in order to realise trajectory S(x) = 0, we 
define new output function h(x) = S(1)(x) + c0S(x). According 
to (9) we choose new coordinates z and write dynamic 
equations (19) in the normal form: 
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            z3 =           y = z1 = S(x)          h(z)  =  z2 + c0 z1   

where new control input  v(z)  is expressed below: 

          v(z) = b(z(x)) + a(z(x)) Uz    
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On the manifold Sh and from assumption (10) on the 
manifold SS, system (21) behaves like a linear autonomous 
system with eigenvalues coinciding with the roots of the 
polynomial  N(s) = s2+(c0 + c)s + c0c . Since both coefficients 
c0 and c are real and positive the system is asymptotically 
stable with time constants 1/c and 1/c0, respectively. There 
are no oscillations. It is evident that if c0 > c the sliding 
motion on Sh is performed faster than dynamics realized 
‘near’ SS .On the other hand, if c0 < c the asymptotic sliding 
mode near SS cannot be faster because its steady state is 
achieved with larger time constant, that is 1/c0 . The load 
torque Mm and its time derivative form new kind of 
disturbances. Of course, in this case the matching 
conditions are satisfied and hence only some information 
about ||Mm|| and ||dMm/dt|| is needed to perform an 
undisturbed sliding dynamics. The equivalent control for h(z) 
exists and it is well defined as veq(2) = -c0 z2. To determine 

sliding control by means of switching function, it remains to 
choose appropriate input function v(z). For example, it can 
be the function (22): 

(22)       v(z) = veq (z) + k1 z1 + k2 z2 +  d sgn(h(z)) 

where   
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Each component of (22) is responsible for certain part of the 
dynamics in sliding mode. Control veq(z) is a continuous 
function that maintains trajectory x(t) in a tangential direction 
to manifold Sh. It ‘includes’ disturbances of (21), so that the 
zero dynamics conditions (10) could be hold:  veq (z) = veq(2) 
+ [Mm(t)]c/J + [dMm(t)/dt]/J. Components k1z1 and k2z2 can 
work  together or alternately. They provide feedback signals 
to the correction of the system trajectory on both sides of 
the manifold Sh. By suitable choice of feedback coefficients 
k1 and k2 we determine, on the one side Sh stable 
oscillations while on the other, unstable hyperboles. Also, 
they play a important role in solving the reaching problem of 
Sh from any initial conditions. The last component 
counteracts disturbances resulting from the load torque and 
its derivative. The constant d is selected according to the 
maximum of the disturbance norm. 
In order to verify the theoretical results, simulation studies 
have been carried out. 
 
Simulation results 
 The study has been made for the data included in the 
Appendix. These data has been supplemented with the load 
torque definition. The load torque is an active load of two 
different shapes (Fig.2), one sinusoidal and the other 
trapezoidal, both positive sign and of the same period T 
equals 1 [s]. In every case of simulation, initial points of the 
dynamical system (21) are governed by the conditions (10).  
Main simulation results are presented in figures 2-5. 
 Sliding controller (Fig.1) is a discrete time system that 
pursues a specific algorithm, processing input signals such 
as position, velocity, current, load torque and its derivative. 
It was appropriate to use load torque observer and accurate 
differentiation discrete systems for load torque and position, 
too.  
 Control algorithm performs switching on the hiperplane 
Sh with a finite frequency fp (=1/TP), hence chattering 
phenomena occurs on this plane. In general, this is a 
serious practical problem, but here it is only a part of digital 
algorithm, realized on auxiliary plane, which is not ‘our’ 
target. The reaching conditions are always satisfied for this 
hiperplane, because for the initial conditions (10), spiral 
trajectory (21) will intersect Sh in a finite time. 
 On the other hand the sliding dynamics of the ‘first 
order’ tends asymptotically, along the sliding manifold SS to 
steady state behaviour. When t tends to infinity, function S(t) 
tends to zero with time constant 1/c, but c0 must be greater 
then c, as results from assumptions. The S(x) is a smooth 
function without chattering, therefore  and  are smooth 
functions, too. 
 Reference voltage signal Uz of the current controller is a 
discontinuous signal, switching with high frequency fp 
associated with switching over to Sh. The armature current, 
as planned is constrained, its derivative too. The current 
waveform shows, some harmonics are filtered by low pass 
filter with cut-off frequency equals 1/Tz . 
 The variable load torque does not affect the dynamics of 
the sliding motion on Sh and SS, too. Trajectories (,) are 
the same for both different load torque Mm(t). 
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Fig.2. Load torque Mm(t): 1-trapezoidal, 2-sinusoidal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Reference voltage signal  Uz(t) 
 
Conclusions 
 It can be said that some expected features of the higher 
order sliding mode control has been confirmed. These are 
particular, robust sliding dynamics to the external 
disturbances, smooth ‘sliding trajectory‘ S(x)=0 of the first 
order and chattering phenomena on the second order 
sliding dynamics. The variable load torque does not impair 
sliding dynamics. Second order dynamics is realised with 
accuracy of order O(Tp

r ). Based on simulation results, 
continued research has been taken towards the 
implementation of sliding algorithm introducing observers of 
the load torque and velocity and differentiating subsystems. 
Parameter sensitivity not satisfied matching conditions 
should be analysed. These problems will be presented in 
the next article which is a continuation of this work. 

 
APPENDIX 

--------------------------------------------------------------------- 
Motor parameters 
n=60.7 [rad/s]                             e =3.452 [Vs/rad]  
Pn=46 [ kW]                                  n=2.2  
Un=220 [V]                                     p=70  
In=231 [A]                                p*In= 16170 [A/s]  
0=63.73 [rad/s]                          Jt=5.5 [kg*m2 ]    
Rt=44.6 [m]                        Jmech=5.5 [kg*m2]   
Lt=0.36 [mH]                                 J=Js+Jmech  
--------------------------------------------------------------------- 
Power converter parameters 
Lu=2.94 [mH]        Ru=0.1331[]        Kp=51.3 [V/V] 
--------------------------------------------------------------------- 
Current control system parameters 
Y=0.004 - feedback gain                 T=L/R=0.0221 [s] 
B=J*R/(e )

2 =0.1229 [s] 
T1=0.5*B*(1-sqrt(1-4*T/B)) =0.0289 [s] 
B1=B*T/T1 =0.0940 [s]                Tz = n/p=0.0314 [s] 
TR=Tz*Y*Kp*B/(R*(B1-Tz)) =0.0952 [s]        KR=T1/TR  
Kz=Kp*B/(TR*R+Kp*B*Y) = 166.4054 [A/V] 
Uzmax=n*In*Y*B1/(B1-Tz) = 3.054 [V] 

Sliding regulator   c=1  c0 =2   k1=5   k2=5   d=20500   

                                TP  = 0.0001 [s]  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Armature current  i(t) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. (, ) graph and second order sliding plane (z1 z2) 
 
------------------------------------------------------------------------------- 
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