
 

PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 11a/2012                                               303 

Ren MING1, Dong MING1, Ren ZHONG1, Zhou HAIBIN1, Qiu AICI1, 2 

State Key Laboratory of Electrical Insulation for Power Equipment, Xi’an Jiaotong University (1)  
Northwest Institute of Nuclear Technology of China (2) 

 
 

Chaotic Characteristic of Corona Discharge Series in Air 
Described by a 2D-nonlinear Discrete Dynamic Model 

 
 

Abstract. In order to investigate the chaos characteristics of corona discharge current pulse series in air, the statistical distributions of points (qn, 
tn+1) and points (qn, tn, qn+1) were plotted and compared under different experimental conditions including applied voltage value, gap distance 
and curvature radius of positive point, etc. To describe and study this phenomenon in view of non-linear dynamics, a 2-dimensional nonlinear discrete 
dynamic model was built. The equation forms and its specific coefficients of the model were obtained by fitting method. The basic dynamic 
characteristics including the Eigenvalue of the linear matrix- (Lyapunov exponent) and the attractors were calculated and analyzed. And then, the 
output q-t series of the model at three different modulus of Lyapunov exponent were simulated and discussed. As a conclusion, it was suggested that 
the randomness and statistical feasibility of corona discharge series were greatly influenced by external experiment conditions and the stochastic 
corona time series in limited time scope could be interpreted as a phenomenon driven by chaos. 
 
Streszczenie. W artykule zaprezentowano nową metodę statystycznej charakterystyki wyładowań koronowych występujących seryjnie. Opracowany 
został dwuwymiarowy model dynamiczny zjawiska, na podstawie którego wyznaczono i poddano analizie charakterystyki dynamiczne oraz kryteria 
teorii chaosu dotyczące wyładowań koronowych.  (Charakterystyka chaotyczności seryjnych wyładowań koronowych w powietrzu na 
podstawie dwuwymiarowego, dyskretnego modelu dynamicznego) 
 
Keywords: positive corona discharge; nonlinear dynamics; chaos; discharge series. 
Słowa kluczowe: Dodatnie wyładowanie koronowe, dynamika nieliniowa, chaos, wyładowanie seryjne. 
 
 
Introduction 

Corona discharge is a kind of electrical discharge 
occurring with ionization in high electrical field. It has 
attracted extensive attentions for its destructive characters 
and its applications in many industrial fields, e.g., insulation 
diagnosis [1], electrochemistry [2], electro photography [3] 
and printing [4]. Until now, there are lots of studies on 
corona discharge [5-7], such as Loeb and Kip [8] and 
Fitzsimmons [9] on positive point corona in air, Trichel [10] 
and Loeb et al [11] on negative point corona in air, Ijumba 
et al [12] on energy loss of corona discharges. However, 
these studies mainly focus on mechanism and the 
macroscopic behaviors of corona discharge and are hard to 
explain or describe the stochastic appearance of corona 
discharge series. In recent years, with the development of 
nonlinear dynamics, some researchers have begun to study 
the nonlinear dynamic characteristics of corona discharge 
and other PD types, e.g., Dissado L A  et al [13] proposed a 
nonlinear dynamic model for branched structures in the 
electrical breakdown of solid polymeric dielectrics; Tan X Y 
et al [14] analyzed the chaotic characteristic of the external 
circuit with a needle-plane corona defect; Luo Y F et al [15] 
tried to use the chaotic mathematics for PD recognition in 
Oil-Paper insulation. But till now, no much attention was 
paid to the chaotic and fractal behaviors of corona 
discharge. In addition, due to the randomness showed by 
the corona discharge, the internal non-stochastic 
components are often neglected. In this paper, a special 
experiment setup is used to get the data of q-t discharge 
current pulses. A new statistical method is proposed to 
obtain the statistical characteristic of the corona discharge 
time series, and then a 2D nonlinear dynamic model is 
established. Based on the proposed model, the dynamic 
characteristics and the chaotic criteria of corona discharge 
have been analyzed, which may help to understand the 
stochastic behaviors in corona discharge in terms of 
dynamics perspective. 
 
The basic chaos theory 
Chaos theories describe the erratic behavior in certain 
nonlinear dynamical systems, which study the behavior of 
dynamical systems that are highly sensitive to initial 
conditions. Small differences in initial conditions yield widely 

diverging outcomes for chaotic systems, rendering long-
term prediction impossible in general. The chaotic systems 
have the random-like behaviors in a limited time scope 
which are not driven by random factors. Explanation of such 
behaviors may be sought through analysis of a chaotic 
mathematical model, or through analytical techniques such 
as recurrence plots and Poincare maps. If we use discrete 
difference equations to describe chaotic systems, its 
characteristic could be obtained by means of iteration of 
discrete series. For instance, in N-dimension discrete 
dynamic system, the i-th value could be calculated by 
xi=fi(x0) (where f(xn) is a mapping from Rn (N-dimension real 
space) to Rn, x0 is the initial value.) after the i-th iterations. 
 
A. Criterion of chaos:  

For N-dimensional mapping{x(i), i=1, 2 , …, N}, by 
superimposing an infinitesimal arbitrary perturbations dx(i) 
to the value of m moment xm(i), a new condition could be 
built up as: 

(1)                       ' ( ) ( ) ( )m mx i x i dx i   
In this iteration system, dxn(i) is the difference between 

{xm+n(i)} and {x'm+n(i)}. Its Maximal Lyapunov Exponent 
(MLE) is given by: 

(2) 

               
max

1 1

1
lim log

N
n

N
n n

dx

N dx



 

   

where: 
2

1

[ ( )]
L

n n
i

dx dx i


 
 

Lyapunov Exponent spectrum can be calculated by 
Gram-Schmitor thogonalization method (also called 
linearization matrix method). For instance, there is a first 
order differential equations set with two dimensions, as 
shown in following: 

(3)
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where f and g are the nonlinear functions of x and y, 
respectively. 

Equation (4) is the slope of each point along the phase 
trace on the phase plane except for the equilibrium points. 
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(4)
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By introducing two variables  and  nearby the 

equilibrium points and making x=x0+, y=y0+, the linear 
result for the equilibrium points can be obtained by: 

(5)
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Stability solution of equations (also called fixed points) is 

determined by the modulus of Eigenvalue, 1,2. When |1,2| 
<1, the fixed point is convergent; When |1,2|>1, it is 
unstable. 
 
B. Discussion about systematicness and randomness 

of corona discharge series:  
Generally, it is difficult to distinguish whether the signal 

of corona discharge series is a pure random behavior or 
chaotic behavior because the deterministic chaotic 
dynamical system also has some “random-like” features in 
a finite time scope. From a physical point of view, the 
corona discharge series are determined by mutual 
constraint and influence of the factors, such as production 
of initial effective electrons, electric field distortion by 
bifurcate of streamer and the memory effect of discharge 
channel. These complex physical motivations constitute a 
dynamic system which may have some chaotic 
characteristics. 
 
2D nonlinear discrete dynamic model of corona 
discharge series 

Some researchers have studied the q-t characteristic of 
corona discharge current and proposed some models [16]. 
In Fromm’s study, a model called “Time lag/Recovery 
model” for PD recognition has been verified experimentally 
for void discharge and point corona discharge, as shown in 
Fig.1., where qn-1, qn  and qn+1 are the magnitudes of (n-1)-th 
discharge, n-th discharge and (n+1)-th discharge, 
respectively, tpre(n) and tsuc(n) are the current time lag and 
the previous time lag of n-th discharge, respectively. 

 
Fig.1. Demonstration of time lag/recovery model 
 

Time lag/Recovery model was presented for PD 
recognition under the assumption that the discharge current 
magnitude was related to the previous time-lag but was not 
depended on the last discharge magnitude. In fact, 
according to some researchers’ studies [17,18], the last 
discharge has some effect on the current discharge through 
the influences such as the space charge distributing in 
residual channel, the electron energy and the recovering of 

internal electric field. Therefore, at the micro level, each 
corona pulse is depended by not only the time lag but also 
the precious discharge quantity (or magnitude). Based on 
this theory, 2D functions could be built as the form: 

(6)
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Let qn+1=qsuc(n), qn=qpre, tn+1=tsuc, tn=tpre, a 
discrete dynamic model can be built up as the form: 

(7)
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Experiment and mathematical model of corona in 
atmosphere air 
A. Experimental setup:  

In order to obtain the expression form of function (7) and 
its specific coefficients, an experimental setup has been 
developed to obtain the data of q-t of corona discharge, as 
shown in Fig. 2. The corona discharge is generated by a 
positive point to plane electrode in air. The curvature radius 
of the point is about 50µm. HVDC voltage is applied to the 
point electrode and the plane electrode is grounded. The 
grounding wire is surrounded by an inductively-coupled 
compensated Rogowski coil (IPC CM-100-L) with 
bandwidth from 30kHz to 140MHz and sensitivity 5.5VA-1 
for 20ns pulsewidth. A 50Ω non-inductive measurement 
resistance is also used to obtain the corona pulses. The 
digital oscilloscope (Lecroy 64MXs-B) with 600MHz 
response bandwidth and 10Gs/s sampling rate is also used 
to observe the corona discharge while the data of 
magnitude of pulse q and the time lag t are collected by a 
high speed acquisition (125MS/s, 14bit) and stored by a 
Peak-hold recorder. 

 
 
Fig.2. The schematic of experimental setup 
 
B. Determination of specific form and its parameters of 

the 2D nonlinear discrete dynamic model: 
According to statistical analysis of experimental data (q-

t) collected by the recorder, the specific form and its 
parameters of the corona discharge time series model 
aforementioned in Sec.3 could be established by fitting 
points (qn, tn+1) and points (qn, tn, qn+1) in coordinate 
system. In this study, it is observed that a tiny perturbation 
of experimental condition would cause a chain of events 
leading to large-scale difference in the statistical result. That 
means that the distributions of points (qn, tn+1) and points 
(qn, tn, qn+1) in the coordinates sometimes are concentrated 
(which could be used as the valid data in fitting) and 
sometimes are very decentralized without obvious statistical 
correlation. Therefore corona time series could be evolved 
from ordered and stable to unordered and unstable under 
some particular condition, or be changed in opposite 
process. Two actual pulse current waveforms under similar 
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experiment conditions obtain by oscilloscope are showed in 
Fig. 3(a) and (b). In appearance, both of the corona 
discharge pulses under condition a. and b. have no obvious 
regular pattern. But the distributions of the pulse series of 
the former is more concentrated than the latter, as shown in 
Fig.4(a). 

 

 
Fig.3. Corona discharge current pulse series under different 
experimental condition 
a. gap distance d=8mm, curvature radius r=50µm, applied voltage 
value=10kV, air pressure=0.1MPa;  
b. gap distance d=15mm, curvature radius r=50µm, applied voltage 
value=15kV, air pressure=0.1MPa. 
 

The expressions of function (7) could be obtained by 
iterative fitting the valid q-t data. Linear regression 
goodness of fit tests is performed on the iteration. The 
optional polynomial order is selected through the test of the 
partial fitting square sum on the basis of the variance of the 
fitting equation, and the second-order polynomial (parabola) 
is determined. The specific parabola form is shown in (8). 
The expressions of f and g have the same maximum order, 
and tn is a proportion term in the function f(tn, qn). 

(8)
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Taking “a. condition” aforementioned as an example, for 
obtaining accurate coefficients, it needs enough data points 
to ensure the Standard Error (S.E.<0.1) and the Coefficient 
of Determination (Adj. R square=1-SSE/SST<1) within the 
acceptable error limits. The experiment data points 
distributions (qn, tn+1) and (qn, tn, qn+1), and the fitting 
curves are presented in coordinates, as shown in Fig. 4. 
The fitting results of coefficients are listed in the Table 1. 
The Adj. R Square of fitting expressions f and g are 0.853 
and 0.722, respectively. 

 
(a) qn-tn+1 

 
(b) qn-tn-qn+1 

Fig.4. Distributions of points (qn, tn+1) and points (qn, tn, qn+1) 
 

Chaotic characteristics of the 2D nonlinear discrete 
dynamic model 

Chaos is disorder state of nonlinear dynamic system 
which is determined by some mathematical criteria. In order 
to analyze the chaotic characteristics of the corona 
discharge model, the following points have been discussed: 
1) Maximal Lyapunov Exponent (MLE) and the simulations 
at different MLE; 2) Bifurcations caused by change of 
parameters of the model; 3) Attracters of the model system 
and the sensitivity to initial conditions. 
 

A. MLE of the model system : 
The stabilities of the fixed points x0,1 in the iterative 

functions should be firstly considered for investigation of 
dynamic characteristic of corona discharge. The fixed points 
x0,1 can be obtained by solving the equation when F(x)=0: 

(9)           2
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where: =a1+b1, =a2+a3b2, =a4+a3b3. 
The Lyapunov Exponent () can be calculated by linear 

matrix method (in Sec.2.1): 

(11)
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Boundary of the stable scope which is restricted by 
the coefficients is showed in. 

(12)
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In some cases, the relationship between tn+1 and qn is 
almost proportional. Therefore, he quadratic coefficient is 
closed to zero, and the fixed points x0,1 are given by (13). 

(13)
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If |b2|<1, this iterative mapping has a contraction area, 
which means that the area of the mapping would be 
contracted by |det(M’)| times after once iteration (Here M’ is 
the Jacobian Matrix as mentioned in Sec.2.1). If det(M’)<0, 
the direction of the boundary would be changed after once 
iteration. 

The results of corona discharge time series (q-t) under 
the conditions|0,1|=0.95, |0,1|=1.13 and |0,1|=1.26, are 
calculated by using the 2D dynamic model, respectively, as 
shown in Fig. 5. When |0,1| is less than 1, the iterative q-t 
series are regular and stable. On the contrary, when |0,1| is 
more than 1, the iterative results become disorder and 
unstable, and sensitive to the initial value of iteration. The 
time series (q-t) output by the model when |0,1|=1.13 is 
similar to the most actual corona time series. This 
simulation could be regarded as a process from ordered to 
chaotic with variation of external conditions.  
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Table 1. Fitting results by using experimental data points (a. condition) 
b1 b2 b3 a1 a2 a3 a4 Adj. R-Square 

Value S.E. Value S.E. Value S.E. Value S.E. Value S.E. Value S.E. Value S.E. f g 
0.451 0.095 -0.413 0.055 0.204 0.006 -0.523 0.091 0.211 0.048 0.204 0.010 0.973 0.008 0.853 0.722 

 
 

 

Fig.5. The corona time series (q-t) under different conditions: 
|0,1|=0.95, |0,1|=1.13 and |0,1|=1.26. 
 
B. Chaos bifurcations caused by change of parameters 

of the model system: 
As for the nonlinear dynamic system, the transition from 

being regular to chaotic is essentially caused by the change 
of parameters of this system, which is represented as the 
change of experimental conditions on the microscopy, i.e., 
the gap distance, applied voltage value, atmospheric 
humidity. In order to analyze this transition, the chaotic 
maps which describe the variations of x (or q) with the 
parameters of the model, are discussed in this section. 

Fig. 6(a). shows the influence of a1 on the stability of the 
system. When a1 is greater than zero, the iterative result 
tends to infinity. The first bifurcation appears when a1 
decreases to -1.116. With the further decrease of a1, the 
second and the third bifurcation occurs when a1=-1.823 and 
-2.007, respectively. When a2 decreases to about -2.172, 
the system evolves into chaos. 

Fig. 6(b). shows the variation of x with a2. The system 
keeps stable until a2 increases to 0.8412 while the first 
bifurcation occurs during the iteration. Since then, the 
second and the third bifurcation occur when a2 increases to 
1.121 and 1.221, respectively. And these bifurcations make 
the system evolve into the 4-periodical region and 8-
periodical region, respectively. When a2 increases to about 
1.235, the system evolves into chaos completely. Similarly, 
the variation of the chaos dynamic characteristic caused by 
change of a4 is showed in Fig. 6(c). 

 
Fig.6. Chaotic maps of model system with variations of different 
coefficients  
a. a1-x(a2=0.211, a3=0.973, a4= 0.562, b1=0.451, b2=-0.413, 
b3=0.204);  
 

 
b. a2-x(a1=-0.52, a3=0.973, a4= 0.562, b1=0.451, b2=-0.413, 
b3=0.204);  
c. a4-x(a1=-0.523, a2=0.211, a3=0.973, b1=0.451, b2=-0.413, 
b3=0.204);  
d. a3b2-x (a1=-0.6, a2=0.1, a3=1, a4=0.6, b1=0.1) 
 

The coefficients b1 and b2 are determined by the 
relationship between tn+1 and qn. If the relationship of tn+1 
and qn is supposed to linearity, the model has the feature of 
Henon map [19] which is irreversible and can be seen as 
the Poincare map of some three dimensional flows. In this 
case, the area of this map is gradually reduced by iterative 
steps when |a3b2|<1. When a3 is set as 1.0, the effect of 
variation of b2 under different value of b3 is showed in Fig. 
6(d). It indicates that the first bifurcation point shift left with 
increase of b3. But the instable point of a3b2, which would 
make the iterative result tend to infinity, is unchanged yet.  
 
C. Chaotic attractors: 

The chaotic behavior takes place on an attractor when 
the dynamic system evolves into an unstable region. 
Chaotic attractor could be visualized by starting with a point 
in the basin of attraction of the attractor and then simply plot 
its subsequent orbit, as shown in Fig. 7. It is revealed that if 
and only if the fixed points q0,1 are in range of (-0.225, 0), 
the dynamic system is stable. Therefore, the model will 
have some chaos due to the positive initial values of corona 
pulse (q>0) magnitude. Fig. 7(a) and (d) shows the chaos 
attractor mappings (x-y, by 104 times iterations) when a4 
was set to 0.918 and 0.959, respectively. 

Fig. 7(b) and (c) are the local details of Fig. 7 (a). It is 
suggested that the attractors have the Henon self-similar 
structures in shape, and they have many stable periodic 
tracks exist in iteration process with a start of a valid initial 
value above zero. With the increase of a4, the contraction 
distortion of the chaos attractor will occur. 

 
Fig.7. The x-y attractors of the system by 104 times iterations 
a. a4=0.918, a1=-1.018, a2=0.244, a3=0.924, b1=0.102, b2=0.253, 
b3=0.112 
b. a4=0.918, a1=-1.018, a2=0.244, a3=0.924, b1=0.102, b2=0.253, 
b3=0.112 (detail figure) 
c. a4=0.918, a1=-1.018, a2=0.244, a3=0.924, b1=0.102, b2=0.253, 
b3=0.112(detail figure) 
d. a4=0.959, a1=-1.018, a2=0.244, a3=0.924, b1=0.102, b2=0.253, 
b3=0.112 
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Conclusions 
In this paper, a 2D nonlinear discrete dynamic model 

has been built for investigating the chaotic behavior driven 
by systematic component in corona discharge in air under 
DC voltage. According to the analysis and mathematic 
simulation, several conclusions are summarized as follows: 

It is found that the distributions of points (tn, qn+1) and 
points (qn, tn, qn+1) are very sensitive to the experiment 
condition. By using the valid statistical data, the specific 
form and its coefficients of the model were verified. Through 
plotting the chaos mappings, it is found the model system 
evolves from stable to chaotic with the variation of MLE () 
which is caused by the changes of coefficients of the model 
functions. According to analysis and relevant simulation, it 
indicated that when || is less than 1, the q-t series are 
stable and ordered after a few iterations starting with the 
arbitrary initial value; yet when || is more than 1, the q-t 
series begin to be unstable and disorder during the 
iteration. The attractors of the model system have self-
similar structures and its orbit shows a shrinkage process 
with the increase of a4 value. 
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