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Abstract. The electric vehicle (EV) has become a popular topic because of the increasing scarcity of energy sources and growing environmental 
pollution. Unit commitment (UC) with plug-in hybrid electric vehicle (PHEV) for cost optimization is presented in this paper. The profile of charging 
load and vehicle-to-grid (V2G) power of PHEV is forecasted, and various scenarios with different PHEV control strategy are simulated. Quantum-
inspired binary particle swarm optimization algorithm with heuristic strategy has been employed to solve the UC problem. Results show that PHEVs 
will significantly affect the UC problem. PHEVs bring on new load demand to power system, which will increase the generation cost. However, the 
coordinated charging strategy and reasonable usage of V2G power can reduce the generating cost. 
 

Streszczenie. W artykule przedstawiono problem optymalizacji kosztów ładowania pojazdów elektrycznych (ang. Plug-in Hybrid Electric Vehicle) 
pod względem doboru jednostek wytwórczych. Badaniom poddano różne metody regulacji przepływu energii do ładowania odbiorników w postaci 
pojazdów elektrycznych.  Wykazany został wpływ nowego rodzaju obciążenia na zwiększenie kosztów wytwarzania energii. (Problem zobowiązań 
energetycznych jednostek wytwórczych w systemie energetycznym, zawierającym podłączane pojazdy elektryczne) 
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Introduction 
Electrification has become a major trend for the future 

transportation, due to the increasing scarcity of energy 
sources and the growing environmental pollution. Currently, 
many governments and automobile manufactures focus on 
the research and promotion of electric vehicles (EVs) [1]. 
Although the deployment of EVs could reduce the 
dependence on fossil fuel and emissions of CO2, a large 
number of EVs will significantly affect the operation and 
management of the power grid [2]. 

The impact of EV on power system is demonstrated in 
many levels, such as generation, transmission and 
distribution [3-5]. The unit commitment problem is to 
determine the on/off state of units and load demand 
allocation in each time period of planning horizon. The 
impact of EVs on the unit dispatch is mainly reflected in two 
aspects: Firstly, the uncertainty of charging behaviour will 
affect the load demand, and this affection will spread to the 
unit commitment results. Ref. [6] analyzed the impact of 
different charging modes on the unit commitment results, 
but it did not consider the users’ driving habits in the 
modelling process. Secondly, the vehicle to grid (V2G) 
technique makes it possible that EV can provide energy 
back to the grid, which can reduce the output of traditional 
units. Intelligent unit commitment with V2G for cost and 
emission optimization is presented in Ref. [4], that EVs can 
replace the traditional small size unit to provide power, so 
as to achieve cost saving and emission reduction.  

The UC problem is a large-scale, non-linear, mixed-
integer combinatorial optimization problem with constraints. 
It is difficult to find the exact solution to the problem, so 
near-optimal solutions are preferred. Many methods have 
been developed to solve UC problem in the past decades. 
There are some classical methods including priority list 
method (PLM) [7, 8], dynamic programming (DP) [9-11], 
mixed-integer programming (MIP) [12], and lagrangian 
relaxation (LR) [13-15]. These methods are usually rigorous 
in mathematical analysis but have some weakness when 
solving UC problem. PLM is fast because of its heuristics, 
but it often can’t find the best solution. DP has to face the 
curse of dimensionality, and the calculation time will 
increase if some constraints are taken into account. MIP 
requires some assumptions, which will limit the solution 
space. LR is a mature theoretical optimization algorithm that 
is widely used to solve the large-scale combinatorial 
optimization problem. However, it may suffer from 

numerical convergence problem, and some strict 
constraints make the calculation be complicated.  

Besides the classical methods mentioned above, some 
meta-heuristic approaches have been used to solve the UC 
problem. Specifically, there are genetic algorithm (GA) [16, 
17], simulated annealing (SA) [18, 19], tabu search (TS) 
[20], particle swarm optimisation (PSO) [21], and so on. 
These methods have advantage of more likely finding the 
global optimal solution. However, their common drawback is 
time-consuming, especially for a large-scale UC problem. 

In this study, the UC problem considering EV is 
addressed. Since the pure electric vehicles are not 
widespread used yet, the plug-in electric vehicle (PHEV) is 
the study object in this research. In order to consider the 
actual driving behaviours of drivers, the travel data of 2009 
National Household Travel Survey (NHTS) [22] is employed 
in this study. Thereafter, the profile of PHEVs’ charging load 
is forecasted. Coordinated charging strategy aiming to 
mineralize the peak-valley difference is proposed. In 
addition, the V2G capacity of PHEV is predicted, which can 
be used for the spinning reserve. To solve the UC problem, 
quantum-inspired binary particle swarm optimization 
(QBPSO) algorithm with heuristic strategy has been 
employed. The algorithm has been implemented and tested 
on a test system with 10 units.  
 

The Profile of PHEV’s Charging Load 
A) Assumptions and modelling 

In order to forecast the load profile of PHEV, the 
charging power and charging interval should be identified.  

The charging power of PHEV can be obtained by  

(1)   /PHEV PHEV
i C i CP q E   

where qC is the charging rate usually between 0.2C～1C 
(the C-rate signifies charge or discharge rate, charge rate of 
1C means it costs one hour to fully charge the battery from 
empty state); Ei

PHEV is the capacity of the ith PHEV’s battery 
and varies with vehicle types; ηC is the charging efficiency. 

The charging interval contains two elements: charging 
duration and start time of charging. The charging duration 
depends on the battery’s charge rate and initial state of 
charge (SOC) before charging. We assume that the 
charging process will last before the battery is full. Thus the 
charging duration could be defined as follows: 

(2)   (1 ) /Need
i i Ct SOC q   
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Since it is assumed that the charging behaviour is 
always after the last trip, SOCi relates to the daily mileage of 
the ith PHEV, which can be expressed as: 

(3)  
max max

max

(1 / ) 100%, 0.9

10% , 0.9
i i i i

i

i i

d D d D
SOC

d D

    


 

(4)   max /PHEV
i i iD E Q  

where di is the daily mileage of the ith PHEV, Di
max is the 

vehicle’s all electric driving range, Qi is the power 
consumption per mile. It should be noted that equation (3) is 
based on the following assumption: when the battery 
energy is sufficient, PHEV is driven in all-electric mode; 
when the proportion of the remaining energy is below 10%, 
PHEV gets power from the internal combustion engine. 

In this study, it is assumed that the start time of charging 
is associated with the charging pattern. Coordinated 
charging is an effective strategy to make the power grid 
more flexible to accommodate PHEV. It can be performed 
by direct management of the system operator or by 
electricity price mechanism. In this study, the direct manage 
mode is preferred, and the goal of the coordinated charging 
strategy is minimizing the peak-valley difference of load. 
B) Coordinated charging strategy 

The objective of the coordinated charging strategy is 
minimizing the peak-valley difference. The control variable 
is every vehicle’s charging state in each time interval. The 
optimization model can be described as follows: 

1) Objective: 

(5)  

1

1

min max[ ( ) ( ) ( )]

min[ ( ) ( ) ( )]

[1,24]

v

v

N
PHEV

base i j i j i
j

N
PHEV

base i j i j i
j

i

G P t P t X t

P t P t X t

t










 


  

 




 

where G is peak-valley difference of the load curve; Pbase(ti) 

is base load on time it ; Pj
PHEV(ti) is charging power of the 

jth PHEV; Xj(ti) is charging state of the PHEV on time ti，
and “1” means the vehicle is on charging, “0” means the 
vehicle is not on charging; Nv is the vehicle population; λ is 
the penetration of PHEV. 

2) Constraints： 

(6)  
24

1

( )
i

Need
j i j

t

X t t


  

(7)   ( ) 1

C Need
j j

C
i j

T t

j i
t T

X t




  

(8)  C trip
j jT T  

where tj
Need is the charging duration of jth PHEV; Tj

C is the 
start time of jth PHEV’s charging behaviour; Tj

trip is the end 
time of the last trip of jth PHEV. 
C) Charging load of PHEV with coordinated charging 

The only control variable of the above optimism model is 
the charge state Xj(ti) in each interval. However, the solving 
process will become extremely complex when large 
numbers of vehicles exist. Under constrains of equations (6) 
and (7), we can conclude that the charge state can be 
determined if we know the start point Tj

C. It can be 
expressed by： 

(9) 
1, [ , ]

( )
0, [ , ]

C C Need
i j j j

j i C C Need
i j j j

t T T t
X t

t T T t

     
 

In addition, the vehicle stopped earlier will have higher 
priority to be arranged. Therefore, the goal of the 

coordinated charging model can be transformed to 
obtaining the value of Tj

C. The solving process of this model 
can be viewed as a multi-stage decision-making process. 
The task of each stage is to decide Tj

C of each PHEV to 
maintain the minimal peak-valley difference of load. The 
coordinated charging model can be solved by following 
steps: 
Step0: Compute charging power and charging duration of 

each PHEV;  
Step1: Pick a vehicle according to the order of end time of 

its last trip. Predict all possible load curves 
considering the charging load of the PHEV we 
picked. Select the charging start time which cause 
the minimal peak-valley difference, and record it;  

Step2: Update the load curve according to the charging 
power, charging duration and charging start time; 

Step3: If all the vehicles have been arranged, then stop. If 
not, go to step 1. 

Hence, the total charging power load in ti is given by 

(10) 
1

( ) ( ) ( )
vN

PHEV PHEV
Total i j i j i

j

P t P t X t




   

 

Power capacity of V2G 
PHEV can provide electricity energy back to the power 

grid by V2G technique. In this study, the V2G power is used 
for spinning reserve. However, its premise is that the PHEV 
users’ travel will not be affected. Therefore, it is assumed 
that only the vehicle whose SOC is bigger than the 
threshold value can be used to discharge to the grid. The 
power provided by a PHEV in each time interval is: 

(11) lim

lim

, ( )
( )

0 , ( )

PHEV
D j D j iPHEV

j i
j i

q E SOC t SOC
SR t

SOC t SOC

   
 

where SRj
PHEV(ti) is the power provided by the jth PHEV at ti; 

qD is discharging rate ， usually is 0.2C ～ 1C; ηD is 
discharging efficiency; SOClim is the threshold value; SOCj(ti) 
is SOC of the jth PHEV at ti, which can be described as 
follows: 

(12)
max max

max

(1 ( ) / ) 100%, ( ) 0.9
( )

10% , ( ) 0.9
j i j j i j

j i
j i j

d t D d t D
SOC t

d t D

     
 

where, dj(ti) is the distance already travelled travel range by 
jth PHEV until ti. 

Since the frequent alternation of charging and 
discharging in short interval will do great harm to batteries, 
it is assumed that PHEVs can’t offer power to grid when it is 
charging. Also, moving vehicles can’t provide power. The 
total reserve capacity of large-scale PHEVs at interval ti is 
given by: 

(13) ( ) ( ) ( )(1 ( ))
vN

PHEV PHEV
Total i j i j i j i

j

SR t SR t Z t X t


   

where Zj(ti) is the travel state of the jth PHEV at ti, which is 
represented by “0” or “1”. “0” means the PHEV is on the 
road, “1” means the PHEV is stopped and available to 
discharge to grid. 
 

Optimal Unit Commitment Formulation 
A) Objective function 

The unit commitment problem is an optimization 
problem that arranges the start-up and shut-down schedule 
of generating units in near future so that the total cost is 
minimized. Its objective is： 
(14)

24

1
1 1

min [ ( ) ( ( )) ( )(1 ( )) ( )]
N

j i j j i j i j i j i
i j

F u t f P t u t u t Cu t
 

    
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where F is the total production cost; fi(Pj(ti)) is the fuel cost 
of unit j at time ti; Cuj(ti) is the start-up cost of unit j at time 
ti; uj(ti) is the status of unit j at time ti ( “1” means on, “0” 
means off ); N is the number of generators. 

The function of fuel cost fi(Pj(ti)) is in the form of: 

(15) 2( ( )) ( ) ( ( ))j j i j j j i j j if P t a b P t c P t    

where，aj, bj, cj represent the cost coefficients of jth unit. 
The start-up cost of jth generator is: 

(16)

1

1

1

1

, ( )  

 ( ) ( ) 1

( ) , ( )

  ( ) ( ) 1

0 ,

H MD MD Cold
j j j i j j

j i j i

C MD Cold
j i j j i j j

j i j i

Cu T Toff t T T

and u t u t

Cu t Cu Toff t T T

and u t u t

others









   


 


  
  



 

where Cuj
H is the hot start-up cost of jth unit; Cuj

C is the cold 
start-up cost; Toffj is the continuously off time of jth unit up 
to time ti-1; Tj

MD is the minimum down time； Tj
Cold is the cold 

start time. 
B) Constrains 
1）Power Balance Constrain 

(17) 1

( ) ( ) ( )

( ) ( )

N

j i j i Total i
j

PHEV
base i Total i

u t P t P t

P t P t





 


 

where Pj(ti) is the output of unit j at ti, Pbase(ti) is the base 

load at ti, ( )PHEV
Total iP t  is the charging load of PHEVs at time ti. 

2）Supply Constrains 

(18)  min max( ) ( ) ( )j i j j i j i ju t P P t u t P   

where Pj
min, Pj

max are minimum and maximum output of unit 
j. 
3）Reserve Capacity Constrains 

(19) max

1

( ) ( ) max{ ( ) ( ),0}
N

PHEV
j i j base i Sys i Total i

j

u t P P t SR t SR t


    

where SRSys(ti) is the system reserve requirement at time ti, 

( )PHEV
Total iSR t  is the reserve offered by PHEV at time ti. 

4）Minimum On and Off Time Constrains 

(20) 1 1

1 1

( ( ) )( ( ) ( )) 0

( ( ) )( ( ) ( )) 0

MU
j i j j i j i

MD
j i j j i j i

Ton t T u t u t

Toff t T u t u t
 

 

   
   

 

where Tonj(ti-1) and Toffj(ti-1) are continuously on time and off 
time of unit j up to time ti-1, Tj

MU and Tj
MD are minimum up 

and down time of unit j. 
 

QBPSO Algorithm with Heuristic Strategies 
UC problem involves two sub-problems: unit 

commitment and economic load dispatch. The unit 
commitment sub-problem needs to determine the start-up 
and shut-down schedule of the generation units, 
considering the load demand, spinning reserve 
requirements and on/off time constrains of the units. The 
economic load dispatch sub-problem needs to allocate the 
system demand and spinning reserve among the running 
units.  

An internal/external two layer optimization methodology 
is used in this study. The external layer optimization solves 
the unit commitment problem by quantum-inspired binary 
particle optimization algorithm. The internal layer 
optimization solves the economic load dispatch problem by 
interior point algorithm. In detail, module of interior point 
algorithm in the MATLAB will be used in this study. 

QBPSO is a novel particle swarm algorithm, inspired by 
the fundamental theory of particle swarm and features of 

quantum computing [23]. It preserves the diversity of 
population, and has faster convergence speed and global 
optimization ability. 

In QBPSO, quantum bit (Q-bit) is defined as the 
smallest unit, which may be in the “1” state or “0” state. A 
Q-bit is described by a pair of numbers (α, β), which satisfy 
the constraint α2+β2=1. A Q-bit particle as a string of n Q-bits 
can be defined as follow: 

(21)  
1 2

1 2

i i in
i

i i in

p
  
  
 

  
 




 

where αij
2+βij

2=1, j=1,2,…,n. The state of the jth element in 
particle pi takes a value of 0 or 1 by the probability ofαij

2 or 
βij

2. In the initialization step, both α and β of each particle 
equal to 1/√2 in order to make “0” state and “1” state occur 
with equal probability. 

The position vector of ith particle Xi={xi1,…, xim} is 
determined by the value of βij

2 stored in the ith Q-bit string: 

(22) 
21 ,

0 ,
j ij

ij

rand
x

otherwise

 
 


( 1,2,j m  ) 

where randj is random number uniformly distributed 
between 0 and 1. m is the length of the Q-bit string. 

Instead of velocity updating in traditional particle swarm 
optimization, rotation angle updating is used in QBPSO. 
Determining the rotation angle requires information on the 
following aspects: the current position, the best position of 
the ith particle and the group’s best position so far. 

(23) 1 , ,
1 2{ ( ) ( )}k k P k k k G k k

ij i ij ij i j ijx x x x            

where θ is the magnitude of rotation angle, γ1i
k andγ2i

k are 
two factors determining the direction of evolution towards 

personal best and group best, ,P k
ijx  is the personal best of 

the jth element in the ith particle, ,G k
jx  is the group best of 

the jth element, k
ijx  is the current position, k is the current 

iteration number. 
The magnitude of rotation angle θ affects the 

performance of the algorithm. The values from 0.001π to 
0.05π are recommended for θ, and a dynamic rotation angle 
approach is adopted for enhancing the convergence 
characteristics: 

(24) max max min
max

( )
k

K
        

where k is the current iteration number, Kmax is the 
maximum iteration number, θmin=0.001π and θmax=0.05π. 

The factors γ1i
k and γ2i

k can be obtained in the following 
way: 

(25) 1

0, ( ) ( )

1,

k
k i i
i

Fit X Fit Pb

otherwise


  


 

(26) 2

0, ( ) ( )

1,

k
k i
i

Fit X Fit Gb

otherwise


  


 

where Fit(*) is the fitness of the particle, Pbi
k is the personal 

best of ith particle, Gbk is the group best. 
The Q-bit is updated by rotation gate as following: 

(27) 
1 1 1

1 1 1

cos( ) sin( )

sin( ) cos( )

k k k k
ij ij ij ij
k k k k
ij ij ij ij

   
   

  

  

       
     

           
 

The unit commitment problem is difficult to be solved 
because of many constraints. In this study, the following 
heuristic strategies are used to help with finding the optimal 
solution: 
1）Start-up priority of units 
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The start-up priority of units is determined referring to 
their per MW cost with their maximum output. The lower the 
cost is, the higher the priority will be: 

(28) max max 2 max[ ( ) ] /i i i i i i iPriority a b P c P P    

2）Spinning reserve constraints handling 
Once the particle violates the spinning reserve 

constrains（19），additional units will be started according 
to their priority until the constraints are satisfied. 
3）Minimum up and down time constraints handling 

Minimum up and down time constraints (20) make the 
unit commitment problem more complicated. The following 
processes are adopted to adjust particles that violating 
these constrains： 

(29) 

1

1

1

1

( ) 0,     ( )

( ) 0, ( ) 1

( ) 1,   ( )

( ) 0, ( ) 1

MD
j i j i j

j i j i

MD
j i j i j

j i j i

u t when Toff t T

and u t u t

u t when Toff t T

and u t u t









  


 


 
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(30) 

1

1

1

1

( ) 1,     ( )

( ) 1, ( ) 0

( ) 0,     ( )

( ) 1, ( ) 0

MU
j i j i j

j i j i

MU
j i j i j

j i j i

u t when Ton t T

and u t u t

u t when Ton t T

and u t u t









  

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

 
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4）De-commitment strategy 
Once the particle has excess spinning reserve, the 

running units will shut down according to their priority until 
the spinning reserve constraint is satisfied. 

The flow chart of the computational procedure is 
illustrated in Fig. 1. 

 

 
Fig.1. Flow chart of the computational procedure 

 

Simulation results and analysis  
A) Test system 

A test system with 10 generators is used for simulation. 
The system data is given in Ref. [21]. Referring to the ratio 
of the installed capacity to the car ownership in U.S. [20], it 
is assumed that there are 0.39 million cars in the 10-unit 
system. The travel data of the cars is a random sample of 
the data in NHTS, which include the number of daily trips, 
the duration of each trip, the mileage of each trip, etc. [21]. 
By processing the travel data, the daily travel distance (di in 
Eq.3)、 the end time of daily driving (Tj

trip in Eq.8)、 the 
cumulative driving distance (dj(ti) in Eq.12) and their driving 
state in each interval (Zj(ti) in Eq.13) can be obtained. The 
proportion of various types of PHEV and their battery 
capacity are shown in Table 1. It is assumed that the power 
consumption per mile is 0.3kWh, charging and discharging 
efficiency (ηC, ηD) are 0.9, and the threshold value SOClim is 
0.7. 
 

Table 1. The percentage of PHEV with different battery capacity 
Vehicle Type PHEV20 PHEV33 PHEV40 PHEV60

Proportion 38% 28% 20% 14% 
Battery Capacity /kWh 6 9.9 12 18 

 
B) Prediction of PHEVs’ charging load 

The load pattern considering PHEV with uncoordinated 
charging and coordinated charging are investigated. For the 
uncoordinated charging scenario, it is assumed that all 
PHEVs will start charging when their last trip is over. It 
shows from Fig.2 that the evening peak is increased 
significantly due to the charging behaviour of PHEVs. The 
peak load of evening becomes even higher than that of 
daytime when PHEVs’ penetration reaches 30%. The 
reason for this phenomenon is that most vehicles end their 
last trip in the evening, and the uncoordinated charging 
makes the charging load overlap the original evening peak. 
Therefore, uncoordinated charging is seen as the “worst-
case” scenario [3]. 
 

 
Fig.2. The profile of charging load with uncoordinated charging 

 

 
Fig.3. The profile of charging load with coordinated charging 

Input system data 

Start 

Initialize particles and current iteration k=1 

Use heuristic strategies to modify the 
particles violating the constrains 

Evaluate objective function 

Update Pbi
k and Gbk 

Modify position of particle Xi 

k=k+1 

k >kmax 

End

Update rotation angle Δθij
k+1 

Update particle’s Q-bits using Δθij
k+1 
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Fig. 3 shows the load pattern considering PHEV with 
coordinated charging. It can be seen that the charging 
behaviour have staggered the peak load and filled in the 
load valley. With the increase of PHEV’s penetration, the 
valley-filling effect becomes more obvious. With 15% 
penetration of PHEV, the peak-valley difference reduces 
from 800MW to 678MW. With 30% penetration, the peak-
valley difference is further reduced to 557 MW. 

 

C) Prediction of V2G power 
Based on the coordinated charging strategy, we can 

work out the spinning reserve provided by PHEVs, which is 
shown in Fig.4. It can be seen that the maximum value 
appears at 6 a.m., because most vehicles complete 
charging before 6 for their first daily trip. Then, the battery 
energy will be consumed on the road. The V2G capacity will 
reach minimum at middle night.  

 

 
Fig.4. Spinning reserve provided by PHEVs 
 
D) Unit commitment result without considering PHEVs 

The spinning reserve requirement is set to be 10% of 
the load demand. Unit commitment results of 10-unit 
systems are shown in Table 2 and we can conclude that the 
QBPSO proposed in this paper has better optimization 
ability compared with the reference algorithms. 
 

Table 2. Comparison of optimization results （UNIT: USD） 

Algorithm BPSO[21]  LRPSO[24] IBPSO[25]  QBPSO 

Generation 
cost 

565804 565869 564087 563977 

 

E) Unit commitment result considering PHEVs 
Three scenarios are considered to investigate the 

impact of PHEVs on the unit commitment problem: 
Scenario1: Adopting uncoordinated charging strategy 

without considering the V2G power; 
Scenario2: Adopting coordinated charging strategy without 

considering the V2G power; 
Scenario3: Adopting coordinated charging strategy, and 

using PHEVs to provide spinning reserve by 
V2G technique. 

 

 
Fig.5. Optimal unit commitment of 10 unit system with PHEV 
 

Fig. 5 illustrates the unit commitment results of these 
three scenarios. As shown, the generating cost will increase 
considering the charging load of PHEVs, and the cost will 
become more and more with the growth of PHEVs’ 
penetration. Nevertheless, different control schemes will 
make the generating cost vary significantly under the same 
PHEV penetration. It can be seen that the scenario 1 has 
the highest cost, and scenario 3 has the lowest cost. 

Fuel costs and startup costs for each scenario are 
represented in Table 3. It shows that the generating cost is 
dominated by the fuel cost. The fuel cost decreases from 
scenario 1 to scenario 3 that is why the generating cost also 
decreases from scenario 1 to scenario 3. 
 
Table 3. Fuel cost and start-up cost （UNIT: USD） 

PHEV penetration 15% 
Scenario 1 2 3 
Fuel cost 571663 569903 565875 

Start-up cost 3980 4090 4910 
PHEV penetration 30% 

Scenario 1 2 3 
Fuel cost 585794 582124 575308 

Start-up cost 4040 3190 3100 
 

In order to make a further analysis of the results, the 
statistics on the output of each unit is given in Table 4. The 
generating units are classified into two groups according to 
the start-up priority index: Unit 1 —  Unit 5 are fuel-
economical type unit because of the lower per MW cost; 
Unit 6 — Unit 10 are fuel-consuming type. Table 5 shows 
the accumulated outputs of each type unit. It is indicated 
that, from scenario 1 to scenario 3, the accumulated output 
of the fuel-economical type units increases and that of the 
fuel-consuming type units is reduced.  

Comparing scenario 1 with scenario 2, the load curve of 
the latter is more flat, which makes it possible that the 
generating cost becomes lower by raising the output of fuel-
economical type units and reducing the output of fuel-
consuming type units. Comparing with scenario 2, scenario 
3 not only adopts the coordinated charging strategy, but 
also has PHEVs providing spinning reserve for the grid. 
Thus it makes output regulation of the unit more flexible, 
and finally the system can operate in much more 
economical state. 

 
Table 4. Cumulative statistics of generator’s output（UNIT: MW） 

 15% PHEV 30% PHEV 
Scenario

Unit No. 
1 2 3 1 2 3 

1 10920 10920 10920  10920  10920 10920 
2 9870 10094 10297  9988  10097 10076 
3 2080 2080 1820  2210  2080 1560 
4 2340 2210 2080  2470  2600 3120 
5 1635 1635 1871  1636  1709 1840 
6 409  332  349  454  372  394  
7 225  225  175  225  225  100  
8 90  83  76  144  83  86  
9 30  20  10  50  20  20  

10 10  10  10  20  10  0  

 
Table 5. Total output of each type units （UNIT: MW） 

 15% PHEV 30% PHEV 
Unit NO. Case1 Case2 Case3 Case1 Case2 Case3

1-5 26844 26938 26988 27223 27406 27516
6-10 764 670 620 893 710 600 
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Conmclusions 
In this paper, the impact of PHEV on unit commitment is 

demonstrated. PHEVs bring on new load demand, which 
increases the generation cost. On the other hand, PHEVs 
can provide power back to the grid, which is favorable. 
Simulations show that various control strategies lead to 
different UC results. The proposed coordinated charging 
strategy makes the load profile become flat, which 
generates less generation cost. In addition, PHEVs can 
provide spinning reserve for power system by the V2G 
technique, which will reduces the reserve requirement for 
the traditional units, and further lowers the generation cost.  
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