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An algorithm for discrete fractional Hadamad transform with 
reduced arithmetical complexity 

 
 

Abstract. This paper presents an algorithm for discrete fractional Hadamard transform computing for the input vector of length 2n. This algorithm 
allows for significant reduction in the number of arithmetic operations by taking advantage of the specific structure of discrete fractional Hadamard 
transformation matrix. 
 
Streszczenie. W artykule przedstawiony został algorytm wyznaczania dyskretnej frakcjonalnej transformaty Hadamarda dla wektora danych 
wejściowych o rozmiarze 2n. Algorytm ten pozwala na znaczną redukcję liczby operacji arytmetycznych dzięki wykorzystaniu specyficznej struktury 
macierzy dyskretnej frakcjonalnej transformacji Hadamarda. (Algorytm wyznaczania dyskretnej frakcjonalnej transformaty Hadamarda ze 
zmniejszoną złożonością obliczeniową). 
 
Keywords: discrete fractional Hadamard transform, eigen decomposition. 
Słowa kluczowe: dyskretna frakcjonalna transformata Hadamarda, rozkład w bazie wektorów własnych. 
 
 
Introduction 

Discrete fractional Hadamard transform (DFRHT) is a 
generalization of the discrete Hadamard transform (DHT) 
like a discrete fractional Fourier transform is a 
generalization of the discrete Fourier transform. Since the 
discrete fractional Fourier transform have been used in the 
theory and practice of digital signal processing [1-2], it was 
created also fractional versions of other discrete orthogonal 
transforms such as discrete fractional sine and cosine 
transforms [3] and the discrete fractional Hartley transform 
[4]. In [5] was defined a discrete fractional Hadamard 
transform for the vector of length N = 2n. Nowadays, a 
modified version of DFRHT is used in cryptography, 
especially in images processing [6]. 

The aim of this paper is to propose an algorithm for 
calculating the discrete fractional Hadamard transform, for 
the vector of length N = 2n, with a reduced number of 
arithmetic operations. Such a reduction is possible due to a 
special structure of the DFRHT matrix. In [7] were 
presented the possibilities of reducing the number of 
arithmetic operations in calculating the matrix-vector 
products for the some set of matrices with special block-
structures. We will show in this paper that the DFRHT 
matrix has the particular block-structure. 
 
Discrete fractional Hadamard transform 

A Hadamard matrix is a symmetric square matrix whose 
entries are the numbers +1 and -1. The rows (and columns) 
of this matrix are mutually orthogonal. The normalized 
Hadamard matrix of order N = 2n denoted by HN can be 
defined recursively as follows: 
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for N = 4, 8,…,2n. 
Definition of discrete fractional Hadamard transform is 

based on eigen decomposition of DHT matrix. Eigen 
decomposition is also known as matrix diagonalization. Any 
real nonsingular symmetric matrix (including the Hadamard 
matrix) can be written as a product 
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where ΛN is a diagonal matrix of order N = 2n whose entries 
are exactly the eigenvalues of HN. 
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The superscript T denotes the matrix transposition 
operation. To obtain the decomposition of the Hadamard 
matrix in the form (2) it is necessary to calculate the 
eigenvectors and eigenvalues of the matrix HN. 

In [8], a method for finding the eigenvalues and 
eigenvectors of Hadamard matrix of order 2n has been 

presented. It has been shown there that, if )(
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will be an eigenvector of the matrix H2N associated with the 
eigenvalue . 

In [5] it has been shown that, if )(
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eigenvalue , then vector 

(5)   












 





 )(

1

)(
1)(

12

)21(~
k

N

k
Nk

N
v

v
v  

will be an eigenvector of the matrix H2N associated with the 
eigenvalue -.  

Knowing the eigenvalues +1 and -1 of the matrix H2 
(they can be easily calculated by solving the characteristic 
equation) and associated with them eigenvectors 
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we are able to obtain eigenvalues and eigenvectors 
recursively, for arbitrary order N = 2n Hadamard matrix using 
expressions (4) and (5). 

From what was written above, we can also deduced that 
the only eigenvalues of Hadamard matrices HN for N = 2n 
are numbers +1 and -1. It should be noted that for N > 2 one 
eigenvalue of Hadamard matrix corresponds to more than 
one eigenvector, so the set of eigenvectors determined by 
this method is not unique. 

In [5] it has been also shown that eigenvectors defined 
by (4) and (5) are mutually orthogonal, namely for N = 2n 
and 0  k, l  N-1 the following relationships are true: 
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The recursive method for determining the eigenvectors 
of the order 2n Hadamard matrix based on the formulas (4) 
and (5) allows to obtain a complete set of mutually 
orthogonal eigenvectors of this matrix. However, the 
eigenvectors, being after normalization the columns of 
matrix ZN, and the corresponding eigenvalues can be 
ordered in different ways. In many cases, also in 
generalization of DHT to DFRHT, the frequency ordering of 
eigenvectors is important. It means that the k-th eigenvector 
has k sign-changes. In [5] it has been shown that if the 

number of sign-changes in the eigenvector )(
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k
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order 2n Hadamard matrix is equal to k then the numbers of 

sign-changes in the generated from it eigenvectors )(
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and 2k+1. One is with 2k sign-changes, and the other will 
have 2k+1 sign-changes. 

The number of sign-changes in eigenvectors )0(
12v  and 

)1(
12v  of matrix H2, defined by (6), is equal to 0 and 1 

respectively. If we introduce indication 12 a  ( 0a ), 
we are able to obtain, using formulas (4) and (5), 
eigenvectors of matrix H4: 
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We can note that the number of sign-changes in the above 
eigenvectors are equal to 0, 1, 3, 2 respectively. Therefore, 
to obtain the frequency-ordered sequence of eigenvectors, 
they should be numbered as follows: 
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The corresponding eigenvalues of matrix H4 will be equal to: 

10  ,  11  ,  12  ,  13  . 

We can easily check that for N = 8 the frequency-ordered 
eigenvectors of matrix H8 will will be as follows: 
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and the corresponding eigenvalues will be equal to: 

16420   ,  17531   . 

The above relations can be easily generalized in following 
manner: 
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It shuld be noted that both the eigenvectors of the matrix 
H2 and eigenvectors obtained for higher order Hadamard 
matrices are not normalized. Let the symbol ||v|| means the 
Euclidian norm of vector v. 
 Lemma: For any N=2n we have the relationship 
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which completes the proof. 
If we introduce the designation c = 1+a2, then normalized 

eigenvectors of 2n order Hadamard matrix will take the form 
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Taking into account above relationship, the eigen 
decomposition (2) of 2n order Hadamard matrix, can be 
written as follows: 
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(11)    T
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c
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where N is the diagonal matrix whose nonzero elements 
are 

(12)     jkk
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and VN is matrix, whose columns are frequency-ordered 
eigenvectors of HN, recursively obtained as it was described 
above. 

The discrete fractional Hadamard transform (DFRHT) 
matrix of order N = 2n is defined by [5] 
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The DFRHT is controlled by single angular parameter  
which is connected with the angle of rotation in time-
frequency space. It is easy to chack that for  = 0 the 
DFRHT matrix become the identity matrix and for  =  it is 
transformed into ordinary Hadamard matrix. Generally the 
DFRHT matrix is complex-valued. Based on the definition 
(13) of the DFRHT matrix for N = 2n it is easy to verify that it 
has unitary property [5]: 
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where superscript  denotes a complex conjugation of all 
elements of the matrix. 
 
Specific structure of DFRHT matrix 

As it was described above, we are able to obtain 
recursively eigenvectors of 2n+1 order Hadamard matrix from 
eigenvectors of 2n order Hadamard matrix. Therefore, it is 
possible to obtain the matrix of eigenvectors VN recursively 
too. Let us consider the matrix VN for N = 2, 4, 8 
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Let's transpose the second and fourth column of the matrix 
V4, and then the third and fourth columns of the resulting 
matrix. We obtain the following matrix: 
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The matrix V4 differs from the matrix 4V  only in the order of 

columns. Therefore, one of these matrices can be obtained 
from another by multiplying it by the permutation matrix. In 
this case, we can write: 
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For N = 2 we can also write 
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where P2 is an identity matrix of order two 
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Now let us consider the case N = 8 
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In this case by moving the eighth column of this matrix in 
place of the second one, the fourth column in place of the 
third, the fifth column in place of the fourth, the second 
column in place of the fifth, the seventh column in place of 
the sixth, and the sixth column in place of the eighth, we 
obtain the following matrix: 
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This matrix can be written as: 











 


44

44
8

VV

VV
V

a

a
. 

As previously we can write: 

888 PVV  , 
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where  
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Generalizing the above considerations we can write: 
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The order-2n+1 permutation matrix P2N can be obtained from 
PN permutation matrix of order 2n in the following way. The 
first part (half) of the row with an even index 2k in the matrix 
P2N is equal to the row with the index k in the matrix PN. The 
second part (half) of the row with an even index 2k in the 
matrix P2N consists of all zeros. The first part (half) of the 
row with an odd index 2k+1 in the matrix P2N consist of all 
zeros and the other half is a mirror reflection of row k in the 
matrix PN. The rows are indexed starting from zero. Thus 
the permutation matrix in (16) can be generated recursively 
according to the following rules: 
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for k, l = 0, 1, …, N-1. 

If we write the matrix VN as a product NNPV , then the 

expression (13) takes the form 
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The 2n order DFRHT matrix has a specific block-
structure. 

 Theorem: Any matrix T
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where FN/2, BN/2, GN/2 are some squere matrix and each of 
them has a block-structure similar to the structure of the 
matrix SN.  

 Proof: The proof will be by induction method. We will 
start from n=1 (N=21): 
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Let us assume that the property (21) is true for a fixed n  1 
(N = 2n). We will show that it is true for n+1 (2n+1= 2N). We 
use the fact, that we can write the diagonal matrix D2N in the 
form 



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


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
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All blocks FN, BN, GN have form T
NNN VDV , where DN is 

some diagonal matrix, so they have the same bloc-structure 
as the matrix SN. � 

Since the matrix )(
NΛ  occurring in an expression (19) is 

a diagonal matrix, so by virtue of the above proof, the 
DFRHT matrix has a block-structure such as matrix SN in 
(21). 

 
Possibility of reducing the number of arithmetic 
operations in calculating the matrix-vector product 

The calculation of each discrete transform is related to 
the calculation of the matrix-vector product. Suppose we 
want to calculate the product  

(22)  11   NNN xSy , 
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where N = 2n. We assume that the complex-valued matrix SN 
and real-valued input data vector xN1 are known. If we 
know nothing about the structure of matrix we have to do 
2N 2 multiplications and 2N(N-1) additions of real number. 

If the matrix SN has a structure as in expresion (21) then 
there is posibility of reducing the number of arithmetic 
operation in calculating the output signal yN1, as it was 
shown in [7]. For N = 2 we can write 

(23)        Tbbgbfdiag 23322 ),,(   TTS , 

where T23 is an auxiliary matrix 

(24)     













110

101
32T  

and S2 has the form (f, b, g - some complex numbers) 

(25)           













gb

bf
2S . 

If we want to calculate the matrix-vector product for N = 2  

(26)        12212   xSy  

and we use the expanded form (23) of the S2 matrix as 
follows 

(27)    12233212 ),,(   xTTy Tbbgbfdiag , 

then we have to perform 1 real addition (when we multiply 
T

23T  by x21), 3 multiplications complex numbers by real 
numbers (when we multiply diag( f-b, g-b, b) by previously 
obtained real-valued vector) equivalent to 6 multiplications 
of real numbers and 2 complex additions (when we multiply 
T23 by previously obtained complex-valeud vector) 
equivalent to 4 additions of real numbers. Figure 1 shows a 
dataflow diagram for this case. The dataflow diagram is 
oriented from left to right. Straight lines in the figures denote 
the operation of data transfer. Points where lines converge 
denote summation. Note that one addition of complex 
numbers is equivalent to two real additions. The circles in 
this figure shows the operatons of multiplications real 
numbers by complex numbers inscribed inside the circles. 
One such multiplication corresponds to two multiplications 
of real numbers. 
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Fig. 1. Dataflow diagram of the matrix-vector product calculation for 
N = 2 according to formula (27);  (0) = f-b,   (1) = g-b,   (2) = b 

Hence the number of real multiplications and real additions 
required for computing the matrix-vector product (26) 
according to (27) are equal to 6 and 5 respectively. If we 
had not taken into account the special structure of the 
matrix S2 and performed the product (26) in the usual way 
we would need to perform 8 multiplications of real number 

and 4 real-number additions. Although the calculation gain 
seems to be in this case small, but for the larger length of 
input data it will be significant. 

Let us analyze the matrix-vector product (22) calculation 
in the general case for N = 2n, where the matrix SN has form 
(21). Generalizing in this case the relation (23) we can write 

(28) ))()((
2

32
)2(

2

)1(

2

)0(

22
32 N

T
NNNNN ITΦΦΦITS   , 

where symbols ,  denote Kronecker product and direct 

sum of matrices respectively and 2/2/
)0(

2/ NNN BFΦ  , 

2/2/
)1(

2/ NNN BGΦ  , 2/
)2(

2/ NN BΦ  . It should be noted 

that the matrices )0(
2/NΦ , )1(

2/NΦ  and obviously )2(
2/NΦ  have 

also the same block-structure as matrix SN but their sizes 
are N/2. Using expression (28) the procedure of matrix-
vector product (22) calculation can be written as foolows 

(29)  1

2

3
)2(

2

)1(

2

)0(

22

31 )( 


  N
T

N
NNNNN

N
N xΩΦΦΦΩy , 

where 

2
32

2

3 NN
N

ITΩ  


. 

Figure 2 shows a graph-structural model for this case. 
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Fig. 2. Graph-structural model of the matrix-vector product 
calculation for N = 2n according to formula (29) 

Expression (29) describes obviously only one step of 
reducing the number of arithmetic operations in calculating 

the matrix-vector product (22). Since the matrices )0(
2/NΦ , 

)1(
2/NΦ  and )2(

2/NΦ  have the same structure as the matrix 

SN/2, the same mechanism can be used to reduce the 
number of arithmetic operations in the next steps, when 
these matrices will be multiplied by suitable vectors. 
 
Algorithm with a reduced number of arithmetic 
operations for the DFRHT computing 

We want to calculate the DFRHT transform for real-
valued input vector xN1 
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(30)       1
)(

1   NNN xHy  , 

where N = 2n. As was mentioned above the DFRHT matrix 
has the block-structure as follows: 

(31)  



















 )0(

2

)0(

2

)0(

2

)0(

2)0,(

NN

NN

N GB

BF

H  . 

We assume that this matrix was calculated in advance for 
suitable parameter . We have added an upper index 0, to 
emphasize that there is an initial matrix. In the first step 
from this matrix we construct the next matrix 

(32)          )2,1(

2

)1,1(

2

)0,1(

2

)1,(

2

3 NNNN ΦΦΦH  , 

where )0(
2/

)0(
2/

)0,1(
2/ NNN BFΦ  , )0(

2/
)0(

2/
)1,1(
2/ NNN BGΦ   and 

)0(
2/

)2,1(
2/ NN BΦ  . Obviously to calculate the product (30) 

using )1,(
2/3


NH  we also need to perform some additions on 

input and output data, as it was shown in the graph in 

Figure 2. Each of blocks ),1(
2/

k
NΦ  occurring on a diagonal of 

)1,(
2/3


NH  in (32) has a block-structure as follows: 

(33) 
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Φ    for 2,1,0k  

so we can repeat the same procedure for each of the blocks 
),1(
2/

k
NΦ . In the second step we obtain the matrix  

(34)   )8,2(

4

)1,2(

4

)0,2(

4

)2,(

4

9 NNNN ΦΦΦH   . 

Each of blocks ),2(
4/

k
NΦ  occurring on a diagonal of )2,(

4/9

NH  in 

(34) has a block-structure as follows: 

(35) 
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Φ    for 8...,,1,0k . 

Following this way, in l-th step we can detrmine the matrix 

blocks, )3,(
2/
kl

N lΦ , )13,(
2/
kl

N lΦ  and )23,(
2/
kl

N lΦ  occurring in 

),(
2/3

l
N ll

H  from the blocks ),1(
2/ 1

kl
N l


Φ  obtained in step (l-1) by 

calculating the matrix )1,(
2/3 11




l
N ll

H  according to the formula 
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N
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N
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 for 13...,,1,0 1  lk , 

where each of blocks ),1(
2/ 1

kl
N l


Φ  occurring on the diagonal of 

)1,(
2/3 1



l

N l
H  has a block-structure: 

(37) 
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Φ  for 13...,,1,0 1  lk . 

After n steps we will have matrix 

(38)   )13,(

2

)1,(

2

)0,(

2

),(
3


n

nnn

n
n
N

n
N

n
N

n ΦΦΦH  . 

It should be noted that this matrix is diagonal, because the 
blocks occuring of its diagonal have size 11. This matrix 
does not depend on the input data and can be calculated in 
advance based on the knowledge of the input data length 
and the parameter . Since the size of this complex-valued 
matrix is 3n, so calculating the product of this matrix by a 
real-valued vector requires 23n multiplications of real 
numbers. 

The general procedure for calculating the DFRHT 

transform (30) by using the matrix ),(
3

n
n
H  will take the form  

(39)           13
),(

331   N
T

N
n

NN nnn xΩHΩy  , 

where 
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3
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3

2

3

2

33
1

1

nn

nn NNNNN
NN 



  ΩIΩIΩΩ   

and 

kkk

NNN
2

32

2

3

2 1

ITΩ  
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    for nk ,...,2,1 . 

We consider an example of this procedure for N = 23 = 8 

18827
)3,(

2727818   xΩHΩy T , 

where 

))(( 329643128278   ΩIΩIΩΩ  

and 

432128 ITΩ   ,  23264 ITΩ   ,  13232 ITΩ   . 

Figure 3 shows a dataflow diagram for this case. The 

diagonal entries of the diagonal matrix )3,(
27
H  are denoted 

kh  for 26...,,1,0k . 

Table 1 includes a comparison of the number of 
multiplications and additions of real numbers, required to 
calculate the DFRHT transform in the usual way, and using 
the proposed algorithm (39) for different input vector length 
N, assuming that the vector of the input data is real-valued. 
We can note that the proposed algorithm significantly 
reduces the number of arithmetic operations, especially 
multiplications, in the calculation DFRHT transform and that 
the calculation gain increases with the length of the input 
data. 
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Fig. 3. Dataflow diagram of the DFRHT calculation for N = 8 
according to formula (39) 

Tab. 1. Comparison of the number of multiplications and additions 
requred to calculate DFRHT transform for input vector of length N 

N 
Multiplications  Additions 

Usual way 
Proposed 
algorithm 

Usual way 
Proposed 
algorithm 

2 8 6 4 5 
4 32 18 24 25 
8 128 54 112 95 

16 512 162 480 325 
32 2048 486 1984 1055 
64 8192 1458 8064 3325 

128 32768 4374 32512 10295 
256 131072 13122 130560 31525 

Since the matrix DFRHT satisfies property (15), the 
inverse discrete fractional Hadamard transform (IDFRHT)  

(40)  1
1)(

1 )( 


  NNN yHx   

can be calculated in the same manner as DFRHT 
transform, only the parameter  should be changed to -. 

The general procedure for calculating the IDFRHT 

transform (40) by using the matrix ),(
3

n
n
H  will take the 

form 

(41)           13
),(

331 


  N
T

N
n

NN nnn yΩHΩx  . 

It is easy to chack, that  

(42)    )( ),(

3

),(

3

nn
nn
 HH , 

so if the matrix ),(
3

n
n
H  for calculating DFRHT transform 

was determined, the matrix ),(
3

n
n
H  for calculating IDFRHT 

transform is also determined. The number of real number 
multiplications and additions required to calculate IDFRHT 
transform according to formula (41) will be slightly different 
from these, which are presented in Table 1, since in this 
case the input vector yN1 is complex-valued and the output 
vector xN1 is real-valued, but they will be also smaller than 
if we had not taken into account the special structure of 
DFRHT/IDFRHT matrix. 
 
Summary  
The article presents the rationalized DFRHT algorithm with 
reduced number of arithmetic operations compared to the 
direct way of the DFRHT implementation. Almost the some 
algorithm can be used for IDFRHT transform calculation, 
since DFRHT and IDFRHT matrices have the some block-
structures. 

For simplicity, as example we considered the 
synthesis of this algorithm for the DFRHT calculation for 
N = 23. However, it is clear that the proposed procedure was 
developed for the arbitrary case when the length of input 
data is a power of two. 
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