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Abstract. In the paper the problem of estimation of the prediction intervals (error bars) for the family neuro-fuzzy Short-Term Load Forecasting 
(STLF) models is discussed. We investigate two neuro-fuzzy networks: Fuzzy Basis Function (FBF) Networks, and linear neuro-fuzzy model with 
Tagagi-Sugeno reasoning. The paper contains comparison of selected most important methods for error bars calculation (analytical delta method, 
and bootstrap), and discusses the obtained results in context STLF. 
 
Streszczenie. W artykule zaprezentowane zostały metody wyznaczania przedziałów prognozy dla rodziny neuronowo rozmytych modeli 
krótkoterminowego prognozowania obciążenia sieci. Przebadane zostały dwa rodzaje sieci neuronowo-rozmytych: sieci Fuzzy Basis Function (FBF) 
i liniowe neuronowe modele rozmyte z wnioskowaniem typu Takagi-Sugeno. Artykuł obejmuje porównanie najistotniejszych metod szacowania 
przedziałów prognozy: analitycznej metody delta i bootstrapu), dyskutując wyniki w kontekście krótkoterminowych prognoz obciążenia sieci. 
(Metody wyznaczania przedziałów prognozy dla rodziny neuronowo rozmytych modeli krótkoterminowego prognozowania obciążenia 
sieci) 
 
 
Introduction 
 Accurate  prediction of the loads has a significant impact 
on economic and reliable operation of an electric power 
system. A lot of decisions and operating procedures in 
power companies require estimates of the energy demand 
in the future. In short time horizon, future loads are 
influenced mainly by their past values and weather factors 
(for instance temperature, pressure, humidity, etc.). The 
later relationship is commonly complex, implicit and 
nonlinear. Because of this short-term load forecasting 
(STLF) tools, based on nonlinear modelling methods, have 
ability to outperform classical short-term load forecasting 
models, especially during rapid changes in weather 
conditions. Good results have been achieved using neural 
networks [6-7], and neuro-fuzzy models [1][5][8]. 
 In the paper the application of the family neuro-fuzzy 
models to short-term load forecasting problems is 
discussed. We investigate the problem of estimation of 
prediction intervals (error bars) for the energy demand 
forecasts. There were developed several method of error 
bars assignment for nonlinear regression models. They 
showed reasonable good accuracy in STLF tasks for neural 
networks models (multilayered perceptrons) [2-4], [6-7]. The 
goal of this paper is to verify their usefulness in case of 
neuro-fuzzy networks.  
 The other approaches to prediction intervals estimation 
for neuro-fuzzy systems follow general theory of uncertainty 
assessment in nonlinear models. They are based mainly in 
empirical error estimation on test data set [10] or analytical 
assessment on training set [9] (co called delta method). In 
this paper we investigate both kinds of approaches but in 
more complex form, with more exact results. The empirical 
approach considered here, in opposition to [10] is based on 
bootstrap approach, with resampling procedure of the test 
set. The delta method in [9] uses approximation of the 
model weights covariance matrix with outer product of first 
order derivatives of the model on training set patterns (so 
called outer product approximation or Levenberg-Marquard 
approximation). We have developed for this purposes full 
error Hessian algorithms for neuro-fuzzy networks. In case 
of STLF it gives significant improvement of the results. 
 The first considered model, Fuzzy Basis Function (FBF) 
Network is based on additive fuzzy logic system, with 
Gaussian fuzzy sets in premises of the rules, Larsen 
product aggregation rule, and utilizes crisp numbers in 
consequents of the rules. As a result, the FBF models are 
functionally equivalent Radial Basis Function neural 

networks, and show similar approximation capabilities. The 
equation of FBF network can be written as: 
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where K is a number of rules, x1, …, xn  are input variables 
and y denotes an output variable. Constants aij and ij, 
j =1,…, n, i = 1, …, K, are Gaussian curve parameters, 
centers and widths, respectively, of the fuzzy sets Aij in 
premises of the rules, and bi, i = 1, …, K, are centroids of 
the fuzzy sets in rules consequences. Lets denote that FBF 
equation (1) uses so called Simplified Fuzzy Reasoning 
Rule, which means that the network is equivalent of the 
fuzzy system with constant crisp numbers (centroids) in 
rules consequences: 
 

 IF x1 is Ai1 AND... AND xn is Ain THEN y = bi  
       i = 1, …, K 
  

The FBF model (1) can be considered as a kind of feed-
forward neural network. Computation of the partial 
derivatives, according parameters aij, ij, bi is relatively 
straightforward, and the model can be trained using least 
squares, gradient descent method, similar to back 
propagation learning algorithm for multilayered perceptron 
(MLP) networks, which was used in our case. Other 
learning methods, involving mixed clustering and least 
squares schemes, similar to the described below for 
Takagi-Sugeno networks, are also possible.  
 The FBF models are universal approximators, and it can 
be shown that from statistical point of view FBF model can 
be considered as Parzen-type mean-squared estimator of 
the conditional distribution probability density. Thus, fuzzy 
systems, given by equation (1) are capable to model 
complex nonlinear processes, like loads of the power 
network. 
 The next one, neuro-fuzzy model with linear Tagagi-
Sugeno reasoning, extends the FBF concept, using rules 
consequents in form linear functions:  
 
 IF x1 is Ai1 AND... AND xn is Ain  THEN  
   y = mi0 + mi1x1 + … + minxn , i = 1, …, K 
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where mij, i = 1, …, K,  j =0,…, n, are coefficients of the 
linear functions in consequents, other symbols like in FBF 
case. Also like in case of FBF models, assuming Gaussian 
type membership functions of fuzzy sets in premises of the 
rules, Larsen product aggregation operator and additive 
output defuzzification scheme, we can write the equation of 
the Takagi-Sugeno system, as follows: 
 

(2)  
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where constants aij and ij, j =1,…, n, i = 1, …, K, are also 
like for FBF network, Gaussian curve parameters, centers 
and widths, respectively, of the fuzzy sets Aij in premises of 
the rules. 
 To obtain the forecasting neuro-fuzzy Takagi-Sugeno 
model (6) it is necessary to find the parameters aij, ij, mij. It 
is possible to do the training process using gradient 
methods and error backpropagation algorithm, like for FBF 
network, but in this case we choose other learning scheme, 
performed in two stages: 
 The first stage: calculation of the Gaussian membership 
functions parameters for fuzzy sets in premises of the rules. 
The centers aij of the Gaussian functions are determined 
through application of the clustering algorithm in the input 
space of the system. Calculated centroids of the clusters in 
training data, serve as centroids vectors of the 
multidimensional fuzzy sets ai

* for each system rule. This 
way we may achieve the appropriate positioning of the all 
Gaussian curves in the input space. The width parameters 
ij can be calculated according to relative distance between 
obtained clusters. But good results were obtained also with 
much straightforward approach, rely on simple partitioning 
of the each input variable domain 
 The second stage: calculation of the linear functions 
coefficients in consequents of each rule. This task can be 
expressed after input transformations as generalized 
(curvelinear) least squares problem. The linear function 
coefficients are estimated, by the solving of the linear model 
for training data. 
 
Uncertainty of the neuro-fuzzy STLF models 
 Lets denote by the f(x, w) output of the trained neuro-
fuzzy network for a given input pattern x, and parameters 
set w. The parameters of the neuro-fuzzy networks, it 
means centres and width of the Gaussian functions in 
premises, and the coefficient in consequents of the rules, 
usually are trained using least squares method, or two-
stage mixed learning schemes, involving input-space 
clustering and curve-linear regression. As a result obtained 
model approximates the conditional expected value of the 
target predictive load distribution, conditioned on the input 
pattern.  
 Such regression-type point predictors do not evaluate all 
necessary aspects of the forecasting problem. The decision 
maker, using neuro-fuzzy STLF model, in order assessing 
the uncertainties involved in the prediction, needs additional 
information obtained from the entire conditional target 
distribution of the forecasted load process. We discuss the 
topic of the conditional variance assessment for the 

prediction, around the new data point, in case of neuro-
fuzzy predictor. 
 In the paper we apply the obtained results only to the 
problem of the prediction intervals (error bars), for the 
energy demand forecasts, but they can be used also to 
other decision risk analyses, like the optimal ordering 
strategies on the market development, calculation risk 
margins for the load reserves, making risk-free optimal 
decisions, etc. 
 There are several sources of uncertainty, we should 
take into account, when we try to estimate prediction 
intervals for neuro-fuzzy predictor.  
 As it was stated before, the neuro-fuzzy network 
approximates the expected value of the conditional target 
distribution. The first source of uncertainty of the prediction 
arises from the error of this approximation. Usually it is 
called model bias. The second source uncertainty, model 
variance, results mainly from sampling variation. The 
training set D = {xk, yk} = {(xk1, …, xkn), yk}, k = 1, …, N is 
sampled from the underlying general population. There is 
certain variability associated with this process. Different 
data sets, sampled from the same underlying relationship, 
result in different sets of parameters (weights), and in 
consequence in different predictions. 
 Development of the proper neuro-fuzzy forecasting 
model requires a trade-off between model bias and 
variance. Bias is due to a regression function having 
insufficient flexibility to model the data adequately enough. 
However reducing the bias by increasing the complexity of 
the model or training efforts results in increasing the 
variance (well known problem of overtraining). A model 
better fitted to training data is more sensitive to sampling 
variability. Neuro-fuzzy networks with their good 
approximation capabilities are well known as low bias and 
high variance estimators. There are other reasons of bias, 
like for instance too late or to early stopping of the training 
algorithm. But for proper developed neuro-fuzzy model the 
bias should be relatively small comparing the variance. 
Because of this further in this paper we will assume, that 
the model is unbiased. 
 The intervals resulted from the training set sampling 
variation, obtained for the parameters and model output, 
are usually referred as confidence intervals. To obtain the 
prediction intervals for the new input pattern x, we should 
consider also other important source of uncertainty of the 
forecasts. It is connected with intrinsic and irreducible 
random error. The relationship between dependent and 
explanatory variables, contains the stochastic component, 
so called target noise. Because of the independence of the 
network parameters and the error term, variance 2

y(x) of 
the target distribution can be decomposed into two following 
components: 
 

(3)  )()()( 222 xxx   wy  

 

where 2
w(x) denotes the variance of the model, associated 

with weights uncertainty, and 2
(x) means the variance of 

the random error.  
 It can be shown, that for STLF neuro-fuzzy models, 
there are some empirical backgrounds, to assume 
Gaussian model of the error probability distribution. In 
considered in this paper forecasting problems, testing of the 
model residuals allowed to confirm this assumption (see 
discussion of the target noise variance estimation, in the 
next chapter). So, further we will assume that conditional 
probability distribution of the forecasted load y, for a given 
input pattern x, will have character of the normal distribution 
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N(f(x, w), y(x)), with expected value given by the model 
output (load forecast) f(x, w), and standard deviation y(x) 
defined by (3), with probability density function: 
 

(4)  
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 Further consideration in this paper are based upon a 
normal (Gaussian) distribution of the load forecast. As it 
was noted, in our research, there were basis for such 
assumption, but it should be verified in any individual case. 
 Usually for a distribution of the forecasted load (4), -
prediction interval given is by: 
 

(5)  )(),( 2/1 xwx ypNtf 
  

 

where 2/1 
pNt denotes percentile of the t-Student distribution. 

The number degree of freedom N - p is equal difference 
between number training patterns N and number of 
parameters p. But in our case, because of relatively large 
sizes of training sets (more than 500 training samples in 
each of performed experiments), there is not necessity to 
use t-Student distribution, and prediction interval may by 
calculated directly from normal distribution (4): 
 

(6)    )()2/)1((),( 1,0 xwx yNQf   
 

where QN(0,1)((1+)/2) denotes (1+)/2 quantile of standard 
normal distribution.  
 

Assessment of the forecast variance  
 Lets remind that according to (3), the forecast variance 
2

y(x), consists of two basic components: 2
w(x) - model  

resulting from parameters uncertainty, and noise variance 
2

(x). In this chapter we will discuss assessment methods 
of those components.  
 

A.  Noise variance estimation 
 Reasoning about output uncertainty of the regression 
model in ordinary least squares method, usually uses 
assumption of constant value of the target noise variance, 
2

(x) = 2
. The estimator of 2

 is based on standard 
residual error of the model: 
 

(7)  SSE
pN 
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where SSE is sum of squares of the neuro-fuzzy network 
residuals.  
 However our experiences show, that in case non-linear 
neural and neuro-fuzzy STLF models, assumption of 
constant 2

 variance of the target noise, usually doesn’t 
hold. We obtained much better results, using additional 
input dependent noise model (x), conditioned on the 
forecast input pattern x, and obtained with additional neural 
network (multilayered perceptron).  
 Actually using input dependent variance (standard 
deviation) model of random noise, was necessary for 
confirmation of the normality of predictive load distribution. 
 If we denote the training set for the neuro-fuzzy STLF 
model by D = {xk, yk} = {(xk1, …, xkn), yk}, k = 1, …, N, the 
additional neural network supplying standard deviation of 
the random noise (x), was trained using following set of 
patterns: 
 

(8)  NkexD kk ,...,1|},|,{   
 

where as target values for the training of the additional 
networks |ek| = |yk - f(xk, w)|, k = 1, …, N, are used the 
absolute values of the basic forecasting model training 
residuals.  
 
B.  Assessment of the model variance from parameters, 

with bootstrap 
 We discuss two main approaches to calculation of the 
output variance, resulted from uncertainty of the parameters 
2

w(x), developed for non-linear regression models: 
 The first one is based on bootstrap. 
 The second, delta method, is based on the estimation 

of the covariance matrix of the network weights.  
 Both methods were created mainly for neural network 
predictors, and showed good results in STLF tasks, in case 
multilayered perceptron (MLP) networks [2,3][6-7]. In this 
paper we will analyze their application to the FBF, and 
Takagi-Sugeno neuro-fuzzy models.  
 The bootstrap is pure empirical approach, based on 
resampling of the learning set, drawing (with replacement) 
from learning data patters certain number of samples, and 
training for each sample the separate neuro-fuzzy network. 
The model variance for a given input pattern, resulting from 
weights uncertainty, is estimated using variance of the 
model output over the network representations for different 
samples. 
 More detailed speaking, we have utilized so called pairs 
sampling approach. From training data set D = {xk, yk} = 
{(xk1, …, xkn), yk}, k = 1, …, N, we draw with replacement 
(with uniform probability distribution) B bootstrapped 
samples Di, each of the consisted of N training patterns. 
For every samples Di, we train the appropriate neuro-fuzzy 
model f(x, wi), i = 1, …, K. Output variance from 
parameters 2

w(x), may be calculated by: 
 

(9)  
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where favg(x, ) denotes average of the forecasts, obtained 
from all models f(x, wi), i = 1, …, K: 
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 Finally in this case, the estimator for variance of the load 
forecast distribution (4), conditioned on input pattern 2

y(x), 
given is by equation (3), where 2

(x) is random noise 
variance discussed in previous point, and 2

w(x) is obtained 
from (9). 
 

C.  Assessment of the model variance from parameters, 
with delta method 

 The delta method it is analytical approach, based on 
local linearization of the neuro-fuzzy network in the 
neighborhood of optimal (trained) parameters vector w*, 
using Taylor expansion: 
 

(11) wwxgwxwx  ),(),(),( **ff  
 

where g(x, w*) is the gradient vector of the network with 
respect to the weights (parameters), and w = w – w*. 
Hence, using error propagation law, we can write formula 
for the output variance from for a given input pattern x: 
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(12) ),(),()( T2 wxgCwxgx ww  
 

where, g(x, w*) denotes like in (11) the gradient of the 
network, and Cw is covariance matrix of the network’s 
weights. 
 The covariance matrix Cw can be approximated using 
inverse of the Hessian matrix H of the model error, with 
respect to the weights: 
 

(13) 12 )(  HxCw   
 

where 2
(x) is random noise variance obtained by the 

additional neural network, as discussed in point A.  
 Substituting (13) in (3) we will obtain final delta method 
formula for the model output variance for a given input 
pattern x: 
  

(13) ),(),()()()( *1T*222 wxgHwxgxxx    y  

 
Obtained results and conclusions 
 In the first testing task, we have applied both 
approaches, to FBF and Takagi-Sugeno (TS) neuro-fuzzy 
networks, using the problem of two-day ahead, hourly 
energy demand forecasting, on the peak hour. The width of 
the obtained with both methods prediction intervals was 
tested on independent data set, and empirical frequencies 
of the actual loads inside the estimated interval, verified 
against assumed theoretical expected probability levels , 
used in calculations. 
 Results presented in Table 1, show approximately 
correct frequencies, similar for either both types of 
networks, and both methods. The width of intervals 
calculated for several typical probability levels , is 
appropriate enough, to gave analogous frequencies levels. 
So the empirical verification of the prediction intervals, 
estimated using bootstrap and delta method show good, 
results in both cases. 
 
Table 1. Frequencies of obtained prediction intervals for energy 
demand forecasts on the peak hour 

Prob. level 
Delta method Bootstrap 

TS  FBF  TS  FBF 

80% 76.95% 81.23% 77.11% 81.06% 

85% 83.53% 85.83% 83.69% 85.68% 

90% 88.25% 89.80% 88.11% 89.64% 

95% 92.49% 93.64% 92.49% 93.94% 

 
Table 2. Frequencies of obtained prediction intervals testing for 
daily energy demand forecasting  

Prob. level 
Delta method Bootstrap 

MLP FBF MLP FBF 

80% 81.24% 81.77% 81.84% 80.06% 

85% 85.63% 86.16% 85.80% 84.36% 

90% 89.57% 90.25% 89.86% 89.34% 

95% 93.99% 93.25% 93.99% 93.49% 

 
 The second testing task, was one-day ahead daily 
energy demand forecasting problem. In this case we 
compare prediction intervals estimated with delta method 
and boostrap, for FBF and MLP (multilayered peceptron) 

neural network [4]. As we can see in Table 2, also in this 
case results obtained with both approaches for FBF 
network are approximately correct. Either delta method and 
bootstrap, show similar accuracy for neuro-fuzzy model, like 
for neural network. 
 In conclusion, it can be stated, that for considered in our 
paper short-term load forecasting problems, performed 
researches, showed correct accuracy of the prediction 
intervals calculated both with delta method and bootstrap-
based approach. Both methods cope with the problem from 
completely different directions. Bootstrap estimate is pure 
empirical in the nature, based only on data and behaviour of 
the model itself. From this point of view, it may be 
considered as a much more reliable, than based on the 
approximate theory for linear regression models, with many 
only roughly fulfilled assumptions, delta method.  
 But empirical verifications did not show this difference. 
Both methods worked very similar. It should be noted, that 
delta method requires much less computational efforts than 
bootstrap estimator. And it is the reason, that for practical 
STLF tasks, we recommend rather this approach as a first-
choice method.  
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