
268                                             PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012 

    Anna BARTKOWIAK1 2, Radoslaw ZIMROZ3 

University of Wroclaw (1), Wroclaw School of Applied Informatics (2), Wroclaw University of Technology (3) 
 
 

Curvilinear dimensionality reduction of data for gearbox 
condition monitoring 

 
 

Abstract. Our aim is to explore the CCA (Curvilinear Component Analysis) as applied to condition monitoring of gearboxes installed in bucket wheel 
excavators working in field condition, with the general goal to elaborate a probabilistic model describing the condition of the machine gearbox. To do 
it we need (a) information on the shape (probability distribution) of the analyzed data, and (b) some reduction of dimensionality of the data (if 
possible). We compare (for real set of data gathered in field conditions) the 2D representations yielded by the CCA and PCA methods and state that 
they are different. Our main result is: The analyzed data set describing the machine in a good state is composed of two different subsets of different 
dimensionality thus can not be modelled by one common Gaussian distribution. This is a novel statement in the domain of gearbox data analysis.  
 
Streszczenie. W pracy przedstawiono wyniki prac nad zastosowaniem CCA (Curvilinear Component Analysis  - analiza komponentów 
krzywoliniowych) do nieliniowej redukcji wymiarowości danych wykorzystywanych do diagnostyki przekładni planetarnej stosowanej w układach 
napędowych koparki kołowej. Do oceny stanu technicznego niezbędne jest zbudowanie modelu probabilistycznego zbioru cech diagnostycznych. 
Modelowanie danych wielowymiarowych (gęstości prawdopodobieństwa) dla wszystkich wymiarów jest trudne, i ze względu na istniejącą 
redundancję, nieuzasadnione, dlatego prowadzi się badania nad redukcją wymiarowości zbiorów cech diagnostycznych. W artykule porównujemy 
dwuwymiarowe reprezentacje zbioru cech uzyskane metodami CCA i PCA (analiza składowych głównych) wykazując różnice w uzyskanych 
wynikach. Głównym wynikiem pracy jest identyfikacja w przestrzeni cech diagnostycznych dla przekładni w stanie prawidłowym dwóch podzbiorów 
danych o różnej rzeczywistej wymiarowości zatem nie mogą być one modelowane za pomocą jednego modelu o charakterystyce gaussowskiej. 
Interpretacja tych podzbiorów wiąże się z występowaniem różnych obciążeń maszyny.  (Redukcja wymiarowości danych przy monitorowania 
stanu skrzyni biegów) 
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Introduction 

Our aim is to investigate the curvilinear component 
analysis used in condition monitoring of gearboxes when 
considering vibrations emitted by these gearboxes. The 
problem is very important and complicated, because the 
state of a gearbox can not be evaluated directly basing on 
raw vibration time series and one should use more 
advanced methods providing a multidimensional description 
of gearbox condition. One such method is spectral 
representation of vibration signals in the form of power 
spectra. This takes us on the ground of multivariate data 
analysis. The analysis of vibration signals based on their 
spectral decomposition is well known [5, 7, 9, 12]. However, 
the applied methods are mostly those working on 
covariances or correlations between the observed features, 
which implies using linear models. There is some evidence 
that the dependencies among the observed variables may 
be curvilinear, which is not captured by ordinary, Pearsons’ 
correlations, thus non-linear methods should be used to 
capture the true dependencies. One such method is CCA, 
Curvilinear Component Analysis, developed by Demartines 
and Herault [3, 6]. The method works on inter-point 
distances using specific cost function giving favour to inter-
point proximities in the output space. When working locally 
(that is, with small neighbourhoods), CCA permits to unfold 
the non-linear structures of the data yielding as output some 
flat manifolds of lower dimension. It allows also to make 
projections of the original data to the obtained manifold of 
lower dimension ’dim’. In case of dimension ‘dim’ equal to 2 
or 3 it is possible to visualize the data in 2D or 3D 
scatterplots. Our work presented here may be viewed as a 
case study of applying CCA to vibrations data recorded 
from gearboxes, containing amplitudes of 15 power spectra, 
which constitute 15 derived features. Our specific goal is to 
investigate the shape of the bivariate projections of 
amplitudes of the power spectra derived by using the 
Matlab PSD (power spectral density) function. This is done 
with the intention to obtain a 2D representation of the data 
in a plane and build there a decision boundary delimiting 
the ’normal state’ of a device from an ’abnormal’ one [2]. In 
the paper we analyze data obtained by [1] for a machine 

being in a good state; the respective data set is called set B 
(good). We state that the distribution of the data is 
decidedly not Gaussian. We compare also the projections 
by PCA and CCA and discuss their similarities and 
specificities. This is our original contribution. Our intention is 
to look more closely at the 2D projections and determine 
their shape (distribution) for devices working under small/no 
work load and under typical load. This is important for 
building models of the data. In next section (2) we shortly 
introduce the data used for analysis. Section 3 discuses the 
results (shape of the distribution, relevance of the 2D 
projection, fraction of explained total variance) obtained for 
the analyzing data when using the PCA method. Section 4 
introduces the CCA method and shows the 2D projections 
obtained by this method. Simultaneously analogous 
projections from PCA are shown. The possibility of 
estimating the intrinsic dimensionality of the data is 
investigated. In Section 5 some summary of the results and 
conclusions are presented 

 
Data used for the analysis 

We use part of the data gathered and analyzed by 
Bartelmus and Zimroz [1]. The data are given in the form of 
rectangular matrices of size n × d, with n denoting the 
number of rows and d the number of columns of the data 
matrix X. A brief description of the data might be as follows 
(for details, see [1]). Vibration signal were recorded for a 
planetary gearbox (called in the following also device B or 
machine B) being in good condition (device B). The 
vibration signals were recorded during ca. 15 minutes for 
device B, which resulted in nB = 951 segments expressing 
vibration signals gathered in time moments when the 
respective devices were working in time varying load 
conditions. Each of the segments was subjected to the 
Discrete Fourier Transformation (function PSD from 
Matlab), which yielded finally 15 power spectrum 
components (considering only real part of the spectrum). In 
such a way 15 variables named pp’s were obtained; records 
of these variables constitute data matrices A and B, the last 
being the subject of our analysis. Thus each data vector 
(instance, segment) contains values of d = 15 variables, 
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named pp1, … , pp15; it may be viewed at the same time as 
a d -dimensional data point located in the d -dimensional 
Euclidean space. 

 
Linear reduction of dimensionality using PCA 

PCA (Principal Component Analysis) is one of the most 
frequently used methods for reduction of multivariate data 
and its denoising [5, 7, 9-12]. Using eigenvectors of the 
covariance matrix (or correlation matrix) of a data matrix X 
of size n × d, one projects the data vectors (called also data 
points) to a lower dimensional subspace of dimension say k. 
This yields k new variables, called principal components 
and denoted as PC1, … , PCk. The derived PCs have a 
number of favourable properties [5, 7]. How to find the 
proper dimension k? In [9] it was found that taking the 
correlation matrices for the performed analysis, the proper 
dimension for the set B is k=2 or k=3. Now we have 
investigated how the original variables X1, … , X15 are 
reproduced when taking k=2, k=3, k=6 and k=10 PC 
variables. Before performing the calculations, the data 
matrix X was standardized to have column means equal to 
0 and standard deviation (of each column) equal to 1. The 
PCA was performed using correlation matrix of the 
standardized data. We found, for example, that the original 
variables X1 and X2 are reproduced for dimensions k = 2 
and k = 3 quite satisfactorily (reproduced fractions: for k = 2: 
0.88 and 0.82, for k = 3: 0.88 and 0.84 appropriately), while 
the original variable X3 is reproduced quite poorly 
(reproduced fractions for k = 2 and k = 3 are 0.33 and 0.54 
appropriately). The constructed features PC1 , PC2 and PC3 
permit to make a 2D and 3D visualization of the data. 
Figure 1, right exhibit, shows 2D projections of the analyzed 
data for four samples of size n = 300 each. One may notice 
that the shape of the projected data is quite peculiar: All the 
four projections show clearly that the analyzed data set B is 
composed from 2 types of points: those corresponding to 
time instances when the excavator has worked under small 
or no load (points marked in black), this state will be called 
in the following NO LOAD); and those working under normal 
load condition (points marked in red). These two types of 
points constitute two subgroups of the data referred up from 
now as NO LOAD and LOADED type. The main result of 
this section is that the data, viewed as projections obtained 
by PCA, constitute a mixture of two different types of data 
points. This indicates that the probability density of the data 
is not a common normal (Gaussian) distribution. 
 
CCA – Curvilinear Component Analysis 
 General concept – obtaining projections to lower 
dimensionality manifolds 

The curvilinear analysis (CCA) was introduced by 
Demartines and Herault [3, 4], see also [6, 8] for further 
applications of the method. The basic assumption 
underlying this method is that the multivariate data with d 
variables are located truly in a manifold of lower dimension, 
say p (p < d), moreover this subspace is somehow folded, 
which makes the relations between the observed variables 
– when viewed in Rp – to appear as non-linear ones. The 
problem to solve is formulated as follows:  

We have N data vectors x1, … , xN , each vector is 
located in d-dimensional data space Rd , that is xi  Rd, 
i=1, … , N . This space is called the input space. Each data 
point has d components constituting observed values of the 
variables X1, … , Xd . The main idea is to find a mapping of 
the given N points to a lower dimension subspace Rk (k < d) 
called the output space. The obtained projections in Rk will 
be denoted as yi, i = 1, … , N,.  

How to find a proper mapping? This can be done in 
many ways. One possibility is the following one: For every 
pair of points (i, j), i  j, take the inter-point distances Xij in 
the input space and – basing on some criterion E 
expressing ’error’ or ’cost’– find the corresponding inter-
point distance Yij in the output space. Again, the distance 
between two points (i, j) may be defined in many ways, the 
simplest and most popular is the Euclidean distance. To 
find the proper mapping one needs to solve an optimization 
problem: namely to find values of the yi-s that minimize the 
assumed error function E.  

Also the error function E can be defined in many ways. 
For example, the Sammon stress function is well known in 
this context, it is defined as 
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The computational algorithm elaborated by Sammon 
(see reference in [4], p. 141) has the following drawbacks: 
a) the computational complexity grows exponentially with N; 
b) the solution is valid only for given N points xi ; to make 
the mapping for a new point x0 , the new point should be 
added to the set containing the N points, and all calculations 
should be performed anew with the set of the N + 1 data 
points; c) it aims at to preserve the distances in the input 
space and fails (yields bad mapping) when the data cloud is 
strongly U-shaped.  

Demartines and Herault [3] tackle the problem of 
mapping in a different way. 
1. Their input space contains N data points xi which 

constitute de facto representatives of the entire data. 
The representatives are obtained from a process of VQ 
(Vector Quantization) of the entire data space; if the 
data set is of small size, then all data points may be 
taken as representatives. 

2. The error (or cost) function is defined as 
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The function F(Yij,λy) is chosen as a bounded and 
monotonically decreasing function, in order to favor local 
topology conservation (as in SOM [11]).  

3. The mentioned authors [3, 4] elaborated a fast iterative 
algorithm yielding the mappings of xi to yi, i = 1, … , N. 
For fixed i, the updating of the value yj 

(r)  from the rth 
iteration is done as yj

(r+1) = yj
(r) + ∆ yj , where ∆yj is given 

by the formula (the coefficient (r) denotes the learning 
coefficient at iteration no. r) 
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We have applied the CCA method to the data set B 
described in section 2. For calculations we have used the 
Matlab function cca from the Matlab SOM Toolbox 
(www.cis.hut.fi/projects/) using default settings of the 
function. The elaborated set contains 951 data vectors, with 
15 components each. Our calculations were performed on 
samples counting n=300 elements. Each sample, before 
entering the CCA procedure, was standardized to have 
column means equal 0 and column variances equal 1. We 
have made projections to k = 2 dimensional subspaces. 
Next we have visualized the obtained projection in a scatter 
plot. For each of the samples we have constructed two 
scatter plots: one exhibiting the projections obtained by 
CCA, and the other exhibiting analogous projections using 
the first two principal components. The obtained scatter 
plots are shown in Figure 1. The displayed results were 
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obtained in the following framework: sample size: n = 300, 
starting from: PCA, number of epochs: 10. 
     We have made a lot of other simulations investigating 
the effect of sample size and number of epochs (iterations) 
and starting values used by the algorithm CCA. Because of 
lack of space, we do not show them here.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Projections of four samples counting n=300 data points each. 
Left: CCA with start from PCA. Right: classical PCA. 

 
 
General remarks on the work of the CCA method. 

CCA starts from the supposition that the data are located in 
a lower dimension manifold which is somehow folded, and 
due to some additional noise appears to be located in the 
global d-dimensional space Rd of observed variables. There 
are two stages of the algorithm: first, we need a global 
unfolding of the average manifold, and second, we need a 
local projection of the data onto their average manifold. 
During the unfolding only local information on the data 
distances is needed. This means that the algorithm - at the 
given stage - takes into considerations only data pairs (i, j), 
with distances Yij relatively near each other. This is realized 
by defining appropriately the function F(Yij¸y)=F(Yij) 
appearing in the cost function (2). It is usually defined as: 

(4)  1(.) F  for ijY ; and =0 for ijY  

This has the effect that (quoting [6]) only some of the 
error terms in formula (2) need to be minimized: those for 
which the distance Yij is smaller than some predefined . 
Thus, allowing the matching for only short distances is a 
way to respect the local topology. It has been proved [4] 
that this condition, applied to the output distance, ensures a 
global unfolding much better than other mapping 
techniques, which apply it to the input distances. See [6] for 
details of the second phase. Generally, also from other 
simulations not shown here, we stated that results do not 
depend from the size of the samples and number of epochs 
used for the simulations, but they depend crucially from the 

starting values of the yj - s used by the cca algorithm. Let us 
mention that the starting values should be obtained from a 
kind of VC (vector quantization) of the space Rd, which was 
advised, for example, in [6]. Our experiments show clearly 
that start from PC values has a good effect, while starting 
from completely random initial values is bad (has difficulties 
with global convergence) and should be avoided. 
 

Finding intrinsic dimension of the data 
To see the effect of the unfolding and projection to a 

lower-dimensional manifold, Demartines and Herault [3, 6] 
proposed to use the so called dydx plots (distance of y-s 
and distance of x-s). These are simply scatter plots 
exhibiting for each pair (i,j) of data points the distances (Yij; 
Xij) taking Yij as the 'x' coordinate and Xij as the 'y' 
coordinate. Each scatter plot contains also the diagonal line 
y = x.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2: Seeking for intrinsic dimension by inspecting dydx plots 
constructed for the subsets called NO_LOAD (top) and LOADED 
(bottom). Notice the difference in the displays for the two 
subgroups. All the dydx plots are based on samples of the same 
size. 
 

When seeking for the intrinsic dimensionality of the input 
data, we may apply the following principle: if the distribution 
of the data points lies on the diagonal, we can lower the 
output dimension. On the other hand, when the distribution 
becomes thick, the output dimension is too small. In case of 
multi modal input it is interesting to construct the dydx plots 
separately ([6], p. 632).  

Our data proved to be composed of two different 
subgroups (see Figure 1). The first subgroup (with n = 104), 
consists of data points characterizing the NO LOAD status 
of the machine. The second subgroup, a larger one, (with n 
= 847), consists of data points characterizing the LOADED 
status of the machine.  
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The upper exhibit in Figure 2 corresponds to the NO 
LOAD status of the investigated machine. We investigated 
the dimensionality equal k = 2; 3; 4; 5; 6. For each k we 
have run cca with PCA as starting point and four different 
numbers of epochs: 20, 50, 100 and 400. The appropriate 
dydx plots are shown in the top exhibit of Figure 2. Rows of 
that exhibit correspond to different values of k (that is, 
dimensionality), and columns to different number of epochs. 

What concerns the LOADED status, the investigations 
were done also for k = 2; 3; 4; 5; 6; 7. To make a balance 
for the upper display, for each k, four samples of size n = 
104 were sampled from the LOADED subgroup. For each 
combination k x sample, we have run the function cca using 
PCA as starting point. In such a way 6 x 4 dydx plots were 
obtained - they are shown as subplots in the bottom exhibit 
in Figure 2. Rows in that exhibit correspond to different 
values of k, and columns to different samples. 

Comparing the two exhibits in Figure 2 one states 
enormous difference in the estimated dimensionality of the 
samples (note, all samples in that figure are of the same 
size n = 104). The intrinsic dimension of the LOADED group 
seems to be at least equal 4 and that of the NO LOAD 
group only 2.  

The main result of this section is: The subgroups NO 
LOAD and LOADED are of different dimensionality. 

 
Discussion of the results and closing remarks 

We have investigated the algorithm CCA (Curvilinear 
component analysis) [3] as applied to set B containing data 
from machine being in good condition. This is the first time 
in the context of gearbox condition monitoring, when the 
CCA method was applied. Summary of the results: 

1. The algorithm is an iterative one. For the analyzed 
data set it has worked relatively fast It works with distances 

Xij, i,j = 1, … , N, i  j between all pairs of the recorded N 

data points x1, … , xN 
2. As an iterative algorithm, it needs some initial ("zero") 

approximation of the desired projection vectors y1
(0), … , yN

(0) 

It was stated that PCA projections work good as the starting 
values of CCA; however random choice of initial values 
works bad: it produces a solution which does not reflect the 
true shape of the data. 

3. There is a substantial difference between the 
projections obtained by PCA and CCA, the former being of 
edgy ad the later of rounded shape. 

4. Both algorithms permitted to state that the analyzed 
data set was a mixture of two different classes containing 
data vectors corresponding to the NO LOAD and LOADED 
status of the machine. 

5. The dydx-plots defined on the base of the CCA 
method have shown that the NO LOAD component of the 
mixture constituting the analyzed data has intrinsic 
dimension much smaller then the other component (see 
Figure 2).  

The novelty in our paper is: (i) The cca method was for 
the first time applied to gearbox condition monitoring. (ii) 
We got a better estimation of the intrinsic dimension of the 
analyzed data. (iii) We indicate clearly that data used 
usually for gearbox condition monitoring are not Gaussian; 
moreover, they are not homogenous, thus standard 
methods used in the methodology of gearbox condition 
monitoring should undergo a careful revision. 

All the results listed in this section apply to data 
recorded (as vibration sounds) for gearboxes being in a 
good state, that is, with no (without) serious damage. In our 
future work we intend to analyze analogous data, however 
recorded for a device (gearbox) being in bad condition. So 
far we know, nobody has bothered what is the intrinsic 

dimensionality of the power spectra data used for example 
for monitoring gearbox condition. 
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