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Abstract. Uncertain data are used in navigation, thanks to the nautical knowledge position is then fixed and evaluated. Data processing is rather 
limited since traditional mathematical apparatus based on probability theory with necessary assumptions is not flexible enough to include knowledge 
and ignorance into position fixing calculation scheme. Limited possibility is available regarding fix accuracy evaluation. In the paper possibilistic 
extension of Mathematical Theory of Evidence is explored as new platform enabling modeling and solving problems with uncertainty. 
 
Streszczenie. Niepewne dane są używane w nawigacji, na ich podstawie, dzięki nautycznej wiedzy, pozycja obserwowana jest określana i 
oceniana. Przetwarzanie danych wejściowych jest raczej ograniczone głównie z powodu ograniczeń tradycyjnie wykorzystywanego aparatu 
matematycznego. Aparat taki, oparty na podejściu probabilistycznym, narzuca szereg uwarunkowań, a jego elastyczność nie pozwala na 
uwzględnienie wiedzy jak i ignorancji. W artykule posybilistyczne rozszerzenie Matematycznej Teorii jest przedmiotem eksploracji, jako nowa 
platforma umożliwiająca modelowanie i rozwiązywania zadań z niepewnością. (Reprezentacje ewidencji w określaniu pozycji). 
 
Keywords: evidence representation, fuzzy reasoning, belief structures, position fixing. 
Słowa kluczowe: reprezentacja ewidencji, wnioskowanie rozmyte, struktury przekonań, określanie pozycji. 
 
 

Introduction 
Possibilistic extension of Mathematical Theory of 

Evidence proved to be flexible enough to enable modeling 
and solving problems with uncertainty [23, 26, 27]. Concept 
of using the new platform for position fixing was presented 
by the author in his previous publications. Herein 
possibilistic versus probabilistic approaches are depicted in 
context of solving position fixing problem. The theory 
exploits belief and plausibility measures and operates on 
belief structures as converted versions of evidence 
representations. Usually using theory of evidence one has 
to normalize engaged data structures. Suggested 
normalization approaches feature serious drawbacks, 
therefore new method of data transformation was proposed. 

 

Uncertain evidence and its representation 
In Mathematical Theory of Evidence [22] also known as 

Dempster-Shafer Theory evidence and hypothesis frames 
are considered. In its possibilistic extension uncertain 
evidence is represented using fuzzy sets and masses of 
confidence attributed to these sets. Relations between 
hypothesis and evidence spaces are encoded into evidence 
representation. Fuzzy sets embrace grades expressing 
possibilities of belonging of consecutive hypothesis items to 
the sets related to each piece of evidence. As already 
mentioned each of the fuzzy sets has assigned credibility 
mass. Therefore fuzzy evidence representation consists of 
“fuzzy set – mass” pairs. The mapping is described by 
formula (1). 

(1)  njxefxe kijikiji ,...,1))},((),({()(m    

where: )( kij x  –  membership function, ))(( kiji xef   – 

support for )( kij x  embedded in i-th evidence. 

In presented applications fuzzy evidence mapping 
consists of pairs: vectors representing locations of a set of 
points within sets related to each piece of evidence – 
degrees of confidence assigned to these vectors. Degrees 
of confidence reflect probability of an isoline being located 
within given strip area or a position being located inside two 
belts intersection region. Appropriate imprecise values are 
at disposal based upon statistical investigations of 
measurements distributions. 

Fuzzy sets are represented by membership functions 
that reflect relations between the two universes. It is 
assumed that each piece of evidence is accompanied by a 
set of areas, ranges, therefore membership functions 
reflects relations between elements belonging to hypothesis 
space and sets attributed to elements of the evidence 

frame. Membership function converts the hypothesis space 
into power set of [0, 1] interval. Membership functions can 

be perceived as following mapping: ]1,0[2}{:  Hk Ωx . 

Membership functions for nautical applications are 
discussed in the author previous papers [8, 9, 10]. 

It is quite often when discrete unary intervals are used 
for evidence representations. Counts of opinions falling 
within each interval are exploited when fuzzy distance to 
navigational obstacle is considered [5, 6]. In order to 
evaluate situation within confined congested regions the 
same sort of data can be used [7]. 

In position fixing fuzzy sets are interpreted in different 
way. Figure 1 shows such specific interpretation. In the 
figure intersection of two imprecise isolines fragments are 
presented. Example hypothesis space (H) is also shown in 
the illustration. Elements from hypothesis space {xk} are to 
be located within reference sets {oij} related to each piece of 
available measurements. Binary or fuzzy valued locations 
are grades of membership functions: )( kij x  that define 

location vectors. 
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Fig.1. Evidence related sets intersection with hypothesis space 
elements 
 

Below presented limitations (2) applied to evidence 
representation exclude empty sets. Item 2 in constraints 
specification stipulates normality of fuzzy sets. Normal sets 
should include highest grade equal to one. Apart from these 
two limitations typical for fuzzy mapping, additional 
requirements 3 and 4, regarding greater than zero masses 
and their total value, are also to be observed. Consequently 
mappings should include all normal fuzzy sets and total 
sum of their masses is to be one. 
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Evidence mapping (1) also called basic probability 
assignment [2, 3, 16] can be considered as belief structure 
provided conditions (2) are satisfied. 

Hereafter function ))(( kiji xef   is assumed known 

for each referential item linked to i-th measurement or 
indication [11, 13]. Let us consider measurement that is a 
random variable governed by Gaussian distribution with 
standard deviation . Ranges   jj CxC 1  of 

abscissa meant as distances from obtained isoline in its 
gradient direction define confidence intervals. Cumulated 
probability equal to the area under the bell curve between 
limits defined by range ),[ 1 jj CC   can be calculated using 

formula (3). 
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Calculated probabilities for two sets of consecutive 
confidence intervals defined by constants Cj are presented 
in Table 1. It is usual that the range of [, +] is given 
instead of crisp, single value of standard deviation. Thus 
established ranges have imprecise and expanding limits, 
consequently they are fuzzy sets, example is shown in 
figure 2. 
 

 
Fig.2. Ranges established around obtained isoline with their 
imprecise limits 

 

Table 1. Probabilities for two sets of consecutive confidence 
intervals 

Cj 0 0.5 1 1.5 2 2.5 3 

P(..)  0.192 0.150 0.092 0.045 0.017 0.005 

Cj 0 1 2 3 

P(..)  0.342 0.136 0.021 
 

Figure 1 presents set of six ranges situated in the 
vicinity of isolines related to two observations. Ranges 
reflect probabilities of the true isolines locations around the 
taken ones. It is assumed that measurements are random 
variables governed by various but known distributions. 
Moreover estimated parameters of such distributions varies 
at real scale, consequently borders between ranges are 
imprecise ones [12]. 

Example of evidence mappings are presented in table 2. 
Presented assignments refer to the scheme shown in 
figure 1. In this case hypothesis space embraces four 
points, therefore: H ={x1, x2, x3, x4}. Each considered point 
can be treated as potential fixed position. The truth of the 
pproposition on representing the fix is to be proved based 
on selected criteria that are metrics exploited in theory of 
evidence, they are plausibility and belief measures [1, 4]. 

Due to particular allocation of the hypothesis frame 
points, sets related to each piece of evidence can be 
reduced to the following items: e1  {o12, o14} and e2  
{o22, o23}. Thus membership function grades, for the first 
piece of evidence, takes the form of expression: 

}),{} , , ,{(}) , , ,{( 141243214321 ooxxxxgxxxxij  . It can 

be read that membership grades are degrees of inclusion of 
hypothesis points within evidence frame. Considering single 
grade )( kij x  one can use formula (4) to obtain its value. 

In the formula C = 1 for binary location, C  [0, 1] in fuzzy 
approach. 
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Table 2. Evidence of two evidence representations 

 oij x1 x2 x3 x4 moij 

m(e1) 
o12= {1 0 1 0} mo12=0.2 
o14= {0 1 0 1} mo14=0.8 

m(e2) 
o22= {1 0.8 0 0} mo22=0.3 
o23= {0 0.2 1 1} mo23=0.7 

 

Data presented in table 2 indicate that points x1 and x2 
are situated within area o12. Points x3 and x4 are located 
outside this area. Moreover type of belonging is binary one, 
particular points are situated within or outside given range. 
This type of membership is justified for any location close to 
the middle section of a considered strip. Membership of the 
second point inside area o22 is to be treated in quite 
different, fuzzy way [11]. It is situated close to the border of 
an area. Subsequently its location should be partial within 
adjacent ranges. To some extent it is located within range 
o22 and partly inside the next one. From table 2 it is seen 
that this point membership grade for area o22 is 0.8, and for 
range o23 is equal to 0.2. 

In probabilistic approach membership grades can be 
seen as Bayesian conditional probability [18, 19]. Value of 

)( ikl oxp can be interpreted as probability of point xl being 

located inside range ok provided i-th piece of evidence is 
considered. At the same time probability of location of the 
true isoline within respective area: )( ikop  is assumed 

known [14]. The interpretation enables encoding evidence 
[19] in a way that is in line with Bayesian representation. It 
should be stressed that the approach features serious 
drawbacks and limitations. Probability distribution stipulates 
sum of one regarding locations within all considered ranges. 
It can be hardly observed in selected cases presumably 
related to small discrepancies in parameters estimation [10] 
in general this requirement cannot be fulfilled. Additionally 
in probabilistic approach there is no simple way of 
modelling uncertainty. Despite these obvious shortcomings 
references to this approach will be made for a few reasons. 
For the first possibilistic scheme of reasoning take its origin 
in probability theory. For the second common conclusions, 
the same important formula can be derived using these two 
approaches. 

In traditional approach probability theory is exploited to 
cope with uncertainty. It can be successful whenever 
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samples counts satisfy imposed requirements. It many 
practical cases this condition cannot be observed. 
Therefore statistical conclusions cannot be drawn and the 
approach is not justified, in such cases possibilistic models 
can be used instead [27]. Possibility theory is an emerging, 
useful tool to be exploited to model and cope with 
uncertainty, which is ubiquitous in navigation. 
 

Combining evidence and position fixing 
Single belief structure containing encoded data 

regarding isoline referring to particular measurement is not 
sufficient to make a fix. In order to achieve the goal one has 
to engage at least two lines of position [14]. In Mathematical 
Theory of Evidence structures combination is carried out 
[3], [4]. During combination all pairs of location vectors are 
associated and product of involved masses is assigned to 
the result set. Obtained assignment is supposed to increase 
informative context of the initial structures. Combination of 
structures embracing measurements data is assumed to 
result in position fixing. The goal can be achieved provided 
association of sets enables selection of common points. In 
navigation points located within intersection of introduced 
ranges are to be selected. Selection is done thanks to T-
form operations [21] used during fuzzy sets association 
[24]. The simplest T-form results in smaller values being 
taken from consecutive pairs of elements in associated 
vectors (see formula (6)). This operation is used in 
numerical examples further presented in the paper. 

Two assignments that satisfy conditions (2) can be 
combined within two dimension structure. Simplified result 
of combination takes the form of assignment presented by 
formula (5). 

 

(5)  ))}(,(,)),(,{()(m 111 clclclccccc mme    
 

where: )(m cc e  – combined assignment, 1c  – result 

membership function, )( 11 ccm   – result mass assigned to 

combined evidence. 
 

Result grades of membership functions cij are selected 
using expression (6) 

 

(6) ))(),(min()()()( 2121 kjkikjkikcij xxxxx    
 

where:  – is the applied T-norm operator. 
 

Result of association with T-norm operator may be 
empty or subnormal. Therefore certain amount of mass may 
be assigned to null set that means conflicting situation also 
called as inconsistency. It causes that achieved assignment 
(4) is pseudo belief structure, which is to be subject of 
transformation in order to obtain normal mapping. 

There are two main methods of normalization named 
after their original inventors: one can use Dempster [1] and 
Yager [25] transformation procedures. It should be stressed 
that the original concepts intended for binary evidence 
mutated being adjusted to emerging new requirements. 
Introducing fuzzy evidence then accepting imprecise 
masses both resulted in modification of the initial 
propositions. 

In Dempster concept masses assigned to non empty 
vectors are increased depending on total inconsistency 
mass. This might lead to unacceptable conclusion that final 
solution (fixed position) can be corrupted by normalization 
process. Fix must solely depend on probabilities of an 
isoline being located within selected strips. 

Alternative normalization method was proposed by 
Yager. In the approach subnormal fuzzy set is made normal 
by increment of all its grades by complement of the set 
height. Note that grades equal to zero indicate that given 

point is outside particular area. Thus the transformation 
contributes to certain amount of belonging to all considered 
points. It should be stressed that values of calculated 
metrics are increased but relations among their relative 
values are maintained. Unfortunately this leads to disability 
in detecting of all inconsistency cases. Consequently final 
uncertainty measure is corrupted. In this approach non 
empty sets masses remain unchanged, masses assigned to 
empty sets increase uncertainty. In order to get rid of above 
mentioned drawbacks herein new transformation method is 
proposed. 

Proposed normalization procedure uses height of a 
fuzzy set: ))((max kci

k
i xh  . During normalization masses 

attributed to location vectors are reduced by the height of 
particular set. Sets are normalized through grades division 
by their heights (first and second expressions in formula 
(7)). It should be noted that product of modified masses and 
grades remain unchanged. It is to be stressed that these 
products contribute to final values of plausibility on 
representing a fix. 
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Last expression in formula (7) specifies that in this 
proposal reduction of masses increase additional factor that 
should be recorded and then analyzed when the fix is 
evaluated. 

 

Table 3. Results of combination of two belief structures 
area  x1 x2 x3 x4 mcij(..) 

o12o22 c11= {1 0 0 0} 0.06 
o12o23 c12= {0 0 1 0} 0.14 
o14o22 c21= {0 0.8 0 0} 0.24 
o12o23 c22= {0 0.2 0 1} 0.56 

 )( lxp = 0.06 0.304 0.14 0.56  

 
Table 4. Normalized results of combination of two belief structures 

area  x1 x2 x3 x4 mF
cij(..) 

o12o22  Fc11= {1 0 0 0} 0.06 
o12o23  Fc12= {0 0 1 0} 0.14 
o14o22  Fc21= {0 1 0 0} 0.192 
o12o23  Fc22= {0 0.2 0 1} 0.56 

  {1 1 1 1} 0.048 

 )(' lxpl 0.06 0.304 0.14 0.56  

 )( lxpl 0.108 0.352 0.188 0.608  

 
Table 3 presents results of combination of two belief 

structures shown in table 2. Collected data contains vectors 
which grades mean hypothesis points fuzzy locations within 
region of intersection of two ranges specified in the first 
column. Masses assigned to these vectors are products of 
probabilities attributed to involved ranges. It should be 
noted these masses represent credibility of a fix being 
located inside the intersection. In probabilistic approach 
obtained result is a Bayesian representation of combined 
evidence. From possibilistic standpoint the result appears 
as pseudo belief structure. 
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where: njk ooo 21  , j, n – number of items in first and 

second assignment respectively. 
 

Set of probabilities calculated with formula (8) are 
shown in row with header: )( lxp . The greatest value 

receives point 4 as located at the intersection o14o23 of 
ranges with the highest initial probabilities regarding 
containing the true isoline. 

As it was mentioned above obtained result seen from 
possibilistic perspective appears as pseudo belief structure 
since set defined by membership function c21 is subnormal. 
Therefore obtained assignment is to be normalized. Result 
of transformation with proposed method is presented in 
table 4. All location vectors are normal and one set 
containing all one grades is added. Set with all one grades 
represents uncertainty. It expresses common sense opinion 
that everything is possible. In other words each hypothesis 
item should be considered likely with the same degree of 
confidence. Apart from family of modified vectors selected 
masses were also changed. 

Obtained belief structure was further examined in order 
to calculate plausibility measures of representing the fix. 
Examination was carried out using formula (9). In the 
formula component ))(( ik xm   is a credibility mass 

attributed to k-th intersection of ranges. Factor )( lk x  

reflects fuzzy locations of hypothesis points within ranges 
intersections. 
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Formula (9) calculates plausibility measure of support 
for a certain fuzzy set embraced in family of related items, it 
was derived in [10]. Plausibility and belief are basic 
measures used in MTE they represents interval valued 
probability of support for selected hypothesis [17]. It should 
be stressed that formulas (8) and (9) are the same although 
derived for different approaches, respectively probabilistic 
and possibilistic ones. 

Set of plausibility measures calculated with formula (9) 
are shown in right hand side of table 3 in row titled with 

)( lxpl . Note that the set of data in row )(' lxpl , obtained in 

condition of disregarding uncertainty, is the same as this 
acquired with formula (8) for Bayesian approach. It should 
be also emphasized that the same sets of final solution 
resulted from proposed conversion method that eliminates 
drawbacks of Dempster and Yager transformations. 

 

Conclusions 
Belief structures in nautical applications contain 

encoded evidence related to taken measurements. Result 
of structures combination is two-dimensional table that 
embraces enriched data enabling reasoning on the fix. 
From possibilistic viewpoint this result is a belief structure 
that is distribution of possibilities regarding representing the 
fix by each point out of hypothesis frame. Mechanisms and 
methods available in the theory of evidence can be 
exploited in order to derive formulas for calculating interval 
valued probability of representing fixed position by each of 
considered points. Interval value limits are equal to belief 
and plausibility measures. Difference between plausibility 
and belief expresses uncertainty, this simple rule is true in 
case of dealing with simple belief structures. Simple 
structure contains data regarding single event, they are 
used while frame of discernment contains a single element. 
Structure used in nautical applications contains data 
referring to a single observation. 

Alternatively, from probabilistic standpoint obtained 
result of combination can be perceived as Bayesian 
evidence representation. It should be stressed that this 
standpoint is justified in selected cases, in general final 
structure does not fulfil probability requirements. Remaining 
unresolved dilemma whether stipulated conditions are 
observed or not one can use Bayesian methods to derive 
formula for calculating support probability for “being a fix” by 
any point out of the hypothesis universe. Surprisingly two 
approaches yield virtually the same formula. 

It should be noted that possibilistic approach itself is an 
extension for probabilistic, Bayesian concept. Extension is 
much more flexible in respect of modelling and ability to 
process uncertainty. 

 

Wydanie publikacji zrealizowano przy udziale środków 
finansowych otrzymanych z budżetu Województwa 
Zachodniopomorskiego. 
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