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Nonlinear ellipsoidal mini-models –  
application for the function approximation task 

 
 

Abstract. Mini-models are local regression models, which can be used for the function approximation learning. In the paper, there are presented 
mini-models based on hyper-spheres and hyper-ellipsoids and researches were made for linear and nonlinear models with no limitations for the 
problem input space dimension. Learning of the approximation function based on mini-models is very fast and it proved to have a good accuracy. 
Mini-models have also very advantageous extrapolation properties. 
 
Streszczenie. Mini-modele to modele lokalnej regresji, które można wykorzystać do aproksymacji funkcji. W artykule opisano mini-modele o bazie 
hiper-sferycznej i hiper-elipsoidalnej oraz badania dla mini-modeli linowych i nieliniowych bez ograniczeń na rozmiar przestrzeni wejść. Uczenie 
aproksymującej funkcji opartej na mini-modelach jest szybkie, a sama funkcja ma dobrą dokładność i korzystne własności ekstrapolacyjne. 
(Nieliniowe, elipsoidalne mini-modele – zastosowanie do aproksymacji funkcji). 
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Introduction 
 Learning of function approximators with an application of 
so called memory-based learning methods is very often 
attractive approach in comparison with creating of global 
models based on a parametric representation. In some 
situations (for example: small number of samples), building 
of global models can be difficult and then memory-based 
methods become one of possible solutions for the 
approximation task. 

Memory-based methods are very well explored and 
described in many bibliography positions. The most 
important here is the k nearest neighbours method (kNN), 
which is described in many versions [1,2,3], but still is the 
subject of new researches [4,5]. Another approaches can 
be methods based on locally weighted learning [1,6] which 
use different ways of a samples weighting. Methods widely 
applied in this category are, for example, probabilistic 
neural networks and generalised regression networks [7,8]. 

The concept of mini-models was introduced by prof. 
Andrzej Piegat. In papers [9,10] there were described local 
regression models based on simplexes. Described models 
were linear and a research work was made only for 
problems in a 1 and 2-dimensional input space. This paper 
presents mini-models based on hyper-spheres and hyper-
ellipsoids. Researches were made for linear and nonlinear 
models with no limitations for the problem input space 
dimension. 
 
Mini-models with a hyper-spherical base 
 The main idea of mini-models is similar to the kNN 
method. During calculations of an answer for a question 
point x* only k nearest (in a meaning of an applied metric – 
here Euclidean metric) samples are taken into account. In 
the classic kNN method the model answer is calculated as a 
mean value of target function values or a weighted mean 
value. In such case, weight values usually depend on a 
distance δ(x*,x) between the question point x* and analysed 
neighbours x, for example: 
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where: the m parameter is taken empirically.  
 The mini-model is a local regression and the answer for 
the question point x* is calculated on the base of a local 
model created for k nearest neighbours. The mini-model is 
always created in time of answer calculations. 

In the simplest case the linear mini-model can be 
applied and then the answer is calculated on the base of 
the linear regression: 

(2) f(x*) = wT · x* , 

where: w – the vector of linear mini-model coefficients found 
for k-neighbours. 

In papers [9,10] there are described mini-models 
created for sectors of the input space that have a triangle 
shape (in a 2-dimensional input space) or a simplex shape 
in a multi-dimensional input space. Such sector will be 
called a mini-model base. In this paper, mini-models will be 
created for a circular base in a 2-dimensional input space or 
a spherical (hiper-spherical) base in a 3 or multi-
dimensional input space. 
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Fig.1. The mini-model base in a 2 and 3-dimensional input space 
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The mini-model base has a center in the question point 
x* and its radius r is defined by a distance between the 
point x* and the most distant point from k neighbours, Fig. 1. 
 Nonlinear mini-models have better possibilities of fitting 
to the samples. An answer of such model is a sum of a 
linear mini-model and an additional nonlinear component: 

(3)  f(x*) = wT · x* + fN(x*). 

 As the mini-model is usually created for a small number 
k of nearest neighbours, the nonlinear function fN should 
have a possibility of changing its shape thanks to as small 
number of coefficients as possible (because n+1 
coefficients must be tuned in the vector w). 
 Among many inspected functions, very advantageous 
properties has the function: 
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where: r is the radius of the mini-model base. In such 
created function we have only one coefficient wN to learn, 
Fig. 2. During learning we must find such a wN value to 
obtain the best fit of the mini-model to k neighbours. 
Exemplary linear and nonlinear mini-models in a 1 and 2-
dimensional input space are presented in Fig. 3 and Fig. 4. 
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Fig.2. Exemplary shapes of the mini-model nonlinear component 
for wN = 1 and wN = –0.5 
 

 
Mini-models with a hyper-ellipsoidal base 
 Very often data are not placed uniformly in the input 
space. Such situation usually happens in the case of multi-
dimensional input space. For such data, a quality of 
modelling could be improved by application of mini-models 
with the base different than hyper-spherical. Mini-models 
with the simplex base, proposed in [9,10], are more flexible 
in fitting to the data, but it is difficult to apply them in the 
multi-dimensional input space. 
 A mini-model which is more flexible in fitting to the data, 
and which is still easy to tune, is the mini-model with a 
hyper-ellipsoidal base. An example of such mini-model 
base in a 2-dimensional input space is presented in Fig. 5. 
 During tuning of mini-model parameters, the data that 
are chosen to create mini-model base (k nearest 
neighbours) are a subject of the PCA transformation and 
next they are normalised. The process of local data 
transformation is illustrated in Fig. 6. 
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Fig.3. Exemplary linear and nonlinear mini-model in a 1-
dimensional input space 
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Fig.4. Exemplary linear and nonlinear mini-model in a 2-
dimensional input space 
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Fig.5. An example of circular and elliptic mini-model base in a 2-
dimensional input space 
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Fig.6. Exemplary local data before (a) and after (b) transformation 
 

 After transformation, samples are uniformly placed in 
the entire new input space, Fig. 6b, and their values belong 
to the normalised range [-1,1]. Such created new local data 
are used for creating nonlinear hyper-spherical mini-model 
on the base of equations similar to (3) and (4). The mini-
model has a hyper-spherical base in the new transformed 
input space, but in the original input space its base has a 
hyper-ellipsoidal shape and in that way it can better fit into 
the data, Fig. 6a and 7. It must be emphasised here that 
mini-model with a more complex shape of the base is 
created with the same number of coefficients as hyper-
spherical one and its tuning is not changed (only PCA 
transformation must be realised in the beginning, but it is 
fast because is performed on a small number of samples). 
 There is small difference in the calculation of the answer 
of the ellipsoidal mini-model. The mini-model base center 
doesn’t lie now in the question point x*, but in the beginning 
of the new (after transformation) coordinate system. It is 
illustrated in Fig. 6. 
 The entire algorithm of calculating the answer for the 
question point x* can be described in following steps. 
1. Find k nearest neighbours of the question point x*. 
2. Perform PCA transformation and normalisation of 

chosen samples. 
3. Perform transformation of the question point x* into the 

new coordinate system **
PCAxx  . 

4. Tune the mini-model parameters and calculate its 
output for *

PCAx  according to formulas: 

(5)  f( *
PCAx ) = wT · *

PCAx  + fN( *
PCAx ), 
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where: r = 1 in the new coordinate system (after 
transformation and normalisation). 
 An example of the ellipsoidal mini-model created for 
samples in a 2-dimensional input space is presented in 
Fig. 7. 
 
Experiments 
 For better visualisation of mini-models work, first 
experiments were realised for data with 1 and 2-
dimensional input space. Of course, spherical and 
ellipsoidal mini-models are the same in a 1-dimensional 
input space. Fig. 8 presents the characteristic of the model 
created with an application of nonlinear mini-models. For 
comparison, there is also presented the characteristic of the 
model created by the kNN method. 
 Mini-models have a very good extrapolation property 
what is presented in Fig. 9. As before, there are presented 
characteristics of models created with an application of the 
kNN method and mini-models. First of all, an attention 
should be paid for a behaviour of mini-models in places 
where there are no samples (information gaps) and outside 
of the samples input domain. Mini-models give answers that 
are much more consistent with a common sense and a 
shape of their characteristic lines is smoother. 
 Fig. 10 presents surfaces created for samples with a 2-
dimensional input space. Both mini-models approximators 
from Fig. 8 and Fig. 10 have better accuracy than the kNN 
method and values of model real errors are given in the 
Table 1. 
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Fig.7. An example of ellipsoidal mini-model created for samples in 
a 2-dimensional input space 
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Fig.8. Characteristics of approximators created for data with a 1-
dimensional input space by the kNN method and nonlinear mini-
models 
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Fig.9. Characteristics of models created for data with the 
information gap 
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Fig.10. Characteristics of approximators created for data with a 2-
dimensional input space by the kNN method and nonlinear mini-
models 
 

 In the next part of experiments, there was evaluated a 
real accuracy of function approximators based on mini-
models, Table 1. The research work was performed on data 
created by the author and data from popular web 
repositories. Data were normalised due to different ranges 
of its inputs. 
 The real error was calculated with an application of the 
leave one out crossvalidation method. Mini-models 
approximators are compared with kNN method and in each 
case calculation results are presented for an optimal 
number of neighbours (giving the lowest real error). 
Additionally, for comparison purpose, there is also given an 
approximation accuracy for a generalised regression 
network (GRN) also with a neuron width optimally tuned.
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Table 1. The real error of function approximators 
data inputs 

number
mean 
kNN 

weighted 
mean 
kNN 

linear 
mini-

model 

nonlinear 
hyper-

spherical 
mini-model 

nonlinear 
hyper-

ellipsoidal 
mini-model

GRN 

sin(x) with 0.5 sampling step (Fig. 8)  1 0.166 0.161 0.095 0.086 0.086 0.142 
sin(x) with 0.2 sampling step 1 0.031 0.030 0.013 0.008 0.008 0.025 

1

)sin()sin(
2
2

2
1

21



xx

xx
 with 0.25 samp. step (Fig. 10)  

2 0.0281 0.0277 0.0228 0.0259 0.0237 0.0254 

1

)sin()sin(
2
2

2
1

21



xx

xx
 with 0.1 sampling step 

2 0.0058 0.0058 0.0049 0.0055 0.0054 0.0052 

bodyfat 14 2.236 2.211 0.472 0.475 0.476 2.671 
cpu 6 29.507 28.937 27.305 27.826 26.779 28.771 
diabetes_numeric 2 0.474 0.481 0.475 0.487 0.479 0.471 
housing 13 2.771 2.685 2.289 2.259 2.346 2.506 
elusage 2 8.885 8.984 8.648 9.154 8.539 9.323 

 
Interesting results were obtained for “elusage” data. 

Mini-models with the ellipsoidal base gave in this case the 
smallest real error. The input space of this data is 2-
dimensional so it is possible to visualise it, Fig. 11. It can be 
seen that the distribution of samples is not uniform – data 
create a path. In such situations mini-models with the 
hyper-ellipsoidal base have a chance to work with better 
accuracy than mini-models with hyper-spherical base. 
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Fig.11. Distribution of samples in “elusage” data and the surface 
of the model characteristic created by elliptic mini-models 
 

Conclusions 
 First of all, the approximation function based on mini-
models proved to have a good accuracy, Table 1. The 
accuracy is particularly great for data without noise. In the 
case of noised data, mini-models have the accuracy 
comparable or slightly worse than kNN methods. 
 Learning of the approximator is very fast – it is enough 
to memorise learning data and the proper mini-model is 
created only in time of calculating an answer for the 
question point x*. A mini-models creating is not 
computationally complex because they are build on the 
base of a small number of samples (k nearest neighbours). 
The linear mini-model is a linear regression found for k 
neighbours and the nonlinear one has only one additional 
coefficient to compute. 
 Mini-models have very advantageous extrapolation 
properties. It results from a fact, that they take into account 
not only samples target values, but also a tendency in the 
neighbourhood of the question point. Using information 
about this tendency cause better modelling in places where 
there is no data (information gaps and outside of the input 
space domain). Information gaps are very characteristic 

property of multi-dimensional data with a small number of 
samples. In such situation data are not placed uniformly in 
the input space and it is advantageous to apply mini-models 
with the hyper-ellipsoidal base. 
 A weakness of mini-models in comparison with the kNN 
method is a necessity of taking into account a greater 
number of neighbours k. For example, a minimal number of 
neighbours needed for linear mini-model is equal n+1, 
where n is a size of an input space. 
 

Wydanie publikacji zrealizowano przy udziale środków 
finansowych otrzymanych z budżetu Województwa 
Zachodniopomorskiego. 
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