
PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012 227

Jun KAWANO1, Hiroshi KAI1, Yoshinobu HIGAMI1, Shinya KOBAYASHI1

Graduate School of Science and Engineering, Ehime University (1)

Dummy code insertion and its efforts on concealment
for secure processing

Abstract. Technology of concealing purpose of program is needed for profitable uses of an external grid. We propose dummy code insertion
technique for concealment technology. We have implemented one kind of technique of dummy code insertion on trail. Moreover we evaluate strength
of concealment against malicious inspection. We explain the detail of evaluation of dummy code insertion technique in this paper.

Streszczenie. Technologia zaciemniania przeznaczenia programu jest niezbędna podczas odpłatnego korzystania z zewnętrznych sieci gridowych.
W artykule zaproponowano jeden z typów technik wstawiania atrap kodu. Dodatkowo oceniono odporność techniki zaciemniania przed złośliwą
penetracją. Szczegółowo wyjaśniono także sposób oceny zastosowanej techniki wstawiania atrap kodu. (Wstawianie atrap kodu oraz wpływ tego
typu zaciemniania na bezpieczeństwo przetwarzania)

Keywords: external grid, concealment, secure processing, dummy code
Slowa Kluczowe: zewnętrzne sieci gridowe, zaciemnianie, bezpieczne przetwarzanie, atrapa kodu

Introduction

The program is distributed to computers connected in a
network and executed in the computer in the grid computing.
The more computers are in the grid, the higher throughput
than the grid computing has.

There are two types of grid computing. One is the
external grid, and another is the internal grid. The external
grid is composed of computers on the Internet, while the
internal grid is composed of computers in an intranet. The
external grid has the higher throughput than the internal grid,
because the external grid is composed of more computers
than the internal grid. However, we cannot identify who is an
owner of each computer in the external grid, so we cannot
trust the owner. In the internal grid, we can identify who they
are.

The owner of the computer in the external grid might get
the intention of the distributed program by investing the
program. This cheat is called as “analyze”. Furthermore, the
owner of the computer in the external grid might reply a fake
result to us. This cheat is called as “alter”.

We have already proposed a technology called secure
processing technology, which is a set of methods against
analyzing and altering. Dummy code insertion is one method
against analyzing. However, it is not clear how effectively the
dummy code insertion works for concealment of the program
intention and how to insert dummy code. In this paper, we
propose a new algorithm to insert dummy codes.

 On the other side, we must stand on the defense side
and offense side, inserting dummy codes and finding out the
dummy code in the program. In this paper, we also proposed
an algorithm to find out dummy codes in the program.
Moreover, we evaluate how difficult to find out dummy codes
from a program.

Data dependence [1]

 Data dependence is required for parallel processing or
distributed processing. Data dependence relations are used
to determine which codes we execute at the same time.
For the instance, in the codes

S1: A = B + C
S2: D = A + 2

statements S1 and S2 cannot be executed at the same time
since S2 uses the value of A that is computed by S1. This is
called “true dependence” since the data value flows from S1
to S2.
In the program segment
S1: A = B + C

S2: B = D / 2

S1 uses the value of B before S2 assigns a new value to
B. Since S1 is to use the “old” value of B, it must be executed
before S2. So this is called “antidependence”.

The third kind of dependence is shown in the program
segment below:

S1: A = B + C
S2: D = A + 2
S3: A = E + F

Here S3 assigns a new value to A after S1 has already
given a value to A. If S1 is executed after S3, then A will
contain the wrong value after this program segment. Thus,
S1 must precede S3. This is called “output dependence”.

 In data dependence, we can delete antidependence and
output dependence using a method called “renaming”.

Secure processing [2][3][4]
 We have already proposed the secure processing

technology against analyzing and altering. In this paper, we
will explain about methods against analyzing, because we
discuss on analyzing in this paper.

 There are three types of methods against analyzing.
The first is “program divide”, the second is “program
reconstruction”, and the last is “dummy code insertion”.

 At first, we will explain about program divide. The
program is divided to some codes. Each code is distributed
to computers in the external grid. So it is hard to analyze,
because the owners get the less information about program
than in the case of inspecting an original program and the
data dependence between codes cannot be recognized.

 However, if malicious owners conspire with other
owners, they can collect some codes, and then they can get
more information about program. Therefore program divide
isn’t sufficient to conceal the information of program.

The program reconstruction makes it hard to analyze the
program. We will explain about the program reconstruction.
First, we collect some programs which we can execute.
Second, we divide these programs to some codes. At last,
we reconstruct program from these codes. These
reconstructed programs are distributed to computers in the
external grid. For the instance, we assume that there are
following two programs.

Program A:
A1: x = y + z
A2: y = z + 3
A3: z = x / y;
Program B:

228 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012

B1: a = b – c
B2: b = a * c * 2

Program A is divided three codes, A1, A2 and A3. Program
B is divided two codes, B1 and B2. The next programs
reconstruct form A1, A2, A3, B1 and B2.

Program R1: A1, B1

Program R2: A2, B2, A3

Program R1 is reconstructed from A1 and B1. Program R2

is reconstructed from A2, B2 and A3. If malicious owners
analyzed, it is hard for them to recognize the original program
since there are codes of Program A and B in Program R1 or
R2.

Now we will explain the third method “dummy code
insertion”. The dummy code doesn’t exist in the original
program, and the dummy code doesn’t influence to the
processes of the original program. If malicious owners
analyzed, it is hard to recognize the original program since
there are dummy codes in the program.

How to insert dummy codes?

 We have already proposed the basic idea of dummy
codes. But we don’t have proposed the adaptable method of
dummy code insertion yet. So, we will propose a method of
dummy code insertion in the following. In this paper, we
assume that the program is written in C language.

The careful points when we insert dummy codes

 When we insert dummy codes, we should make the
dummy code that resembles the original codes. For
example, we assume that there are following the program.

S1: A = B + 5
S2: C = A * 2
S3: D = C / 3

S2 depends on S1. S3 depends on S2. The data
dependence relation of these codes is true dependence. We
assume to insert the code dam as dummy code.

S1: A = B + 5
S2: C = A * 2
S3: D = C / 3
Dam: F = A + D – C

Dam depends on three codes, S1, S2, and S3. If
malicious person analyzed this program, they might guess
that Dam may be a dummy code since Dam depends on
larger codes than the number of codes that original codes
depend. Unfortunately, his guess is right.

How to divide a program?

 Before we insert dummy codes, we divide a program.
If we can know how many iterations are executed by

for-loop or while-loop a priori, we divide the codes in for-loop
or while-loop. If we cannot, we think the codes in for-loop or
while-loop as one code.

How to insert dummy codes?

We will explain how to insert dummy codes.

step1: We decide how many codes the dummy code will
depend on.
step2: We choose a code that the dummy code will depend
on.
step3: We repeat step2 until the number of codes chosen by
step2 reaches the number of codes decided by step1.
step4: We insert the dummy code.

The sample of dummy code insertion is shown in Figure
1. A white circle is a code, and an arrow is dependence
between codes and codes.

Fig. 1. Sample program for dummy code insertion

 In Figure 1, code 2 and code 3 depend on code 1, and
code 4 depends on code 2. Code 6 depends on code 5.
Code 7 and code 8 depends on code 6.

 First, in step1, we decide how many codes the dummy
code will depend on. In this sample, we decide that the
dummy code depend on become two codes.

 In step2, we choose code that the dummy code depends
on. In this sample, we choose code 5.

In step3, we repeat setp2 until the number of codes
chosen by step2 reaches the number of codes decided by
step1. Code 3 is selected as second. As we said, dummy
code depends on two codes. It is not yet necessary to repeat.

 Last, in step4, we can insert a dummy code that
depends on code 3 and code5. The program that is inserted
Dummy code 9 is shown in Figure 2. Gray colored circle
means dummy code.

Fig. 2. The program that dummy code 9 is inserted

 If we repeat this program, we can insert some dummy
codes in the program. We can insert dummy codes to
depend on another dummy codes. We show the sample that
dummy depends on other dummy code.

In Figure 3, the number of codes decided by step1 is
three. Moreover, from step2 to step3, code 7, code 8, and
code 9 are chosen.

When the number of the codes decided by step1 is zero,
we can insert dummy codes to depend no codes. Here, step2
and step3 are not executed. We show the sample that
dummy code to depend no codes.

1

2 3

4

5

6

7 89

1

2 3

4

5

6

7 8

PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012 229

Fig. 3. The sample that dummy code 10 is inserted into
Figure 2.

Fig. 4. The sample that dummy code 11 is inserted into
Figure 3

 In Figure 4, dummy code 11 depends on no codes.

How to find out the dummy codes

 In order to propose strong concealment algorithm, we
have to inspect as a malicious person. As you know, in
research of cryptograph, malicious decryption progresses
research. This story can be told in secure processing, too. So
we will propose how to find out the dummy codes in the
program.

 The dummy code doesn’t influence to the process of the
original program. And the all codes in the original program
are used to compute the result of the program. Therefore, we
can draw the following two assertions.

 It is the dummy code that the code to depend on

dummy codes.
 It is the dummy code that the code which dummy codes

only depend on.

Malicious person can find out dummy codes in the
program with these two assertions.

 When malicious person find out dummy codes, at first,
they suppose that a code is a dummy code. And they find out
dummy codes by searching the supposed code. We explain
how to find out dummy codes in the following.

step1: We suppose that anyone code is a dummy code.
step2: If there are codes that depend on the supposed code,
we repeat from step1 for these codes.
step3: If there is a code whose all successors are dummy
code, the code is also a dummy code.

Evaluation

 We will insert dummy codes into tested program, and try
to find out dummy code from the point of malicious person’s
view. The tested program is solving linear equation with
Gaussian elimination algorithm, shown in [5]. This program
can divide 222 codes. Dummy codes are inserted 10%, 20%,
30%, 40% and 50% of the program.

Result of simulation

 A code on which no codes depend, is called “terminal
code”. Dummy code that implies no other dummy code is
called “solitary code”.

 Table 1 shows the number of terminal codes in the
original program.

Table 1. The number of terminal codes in the original
program.

 Not solitary
codes

Solitary codes Totals

Original codes 1 73 74
Dummy codes - - -

Totals 1 73 74

 Table 1 shows that the original program has 74 terminal

codes and 73 solitary code. So there are few solitary codes in
the original terminal codes.

 Table 2 shows the number of terminal codes in the
program inserted 10% of dummy codes.

Table 2. The number of terminal codes in the program
inserted 10% of dummy codes.

 Not solitary
codes

Solitary codes Totals

Original codes 1 62 63
Dummy codes 9 12 21

Totals 10 74 84

 Table 2 shows that this program has 84 terminal codes

and 10 not solitary codes. Moreover, there are 9 dummy
codes in not solitary codes. So, we have inserted codes that
are few codes in the original program, since it is few that the
code which is terminal code but isn’t solitiary code.
 We have gotten the same result from the program of 20%,
30%, 40% and 50%.

Consideration

The reason that not solitary codes are inserted as dummy
codes may be to choose the codes on which dummy codes
depend randomly. We chose the codes on which dummy
codes depend without thinking another code to depend on
these codes. So we inserted dummy codes not to resemble
original codes.

As the code on which dummy codes depend, we may
have to choose the codes around point to insert dummy
codes. We thought this idea from locality of reference.

1

2 3

4

5

6

7 8 9

1
0

1

2 3

4

5

6

7 8 9

1
0

11

230 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012

Conclusion
 From the result of simulation, we speculate that

malicious person might find out dummy codes to be inserted
by our method since the dummy codes don’t resemble
original codes.

 It is a subject of future study to think how to insert
dummy codes to resemble original codes. We will think the
another method to find out dummy codes, too.

Acknowledgement

 Thanks are due to Dr. Kouji Hirata for valuable
discussion, who works at Tokyo University of science in
Japan.

This work was supported by Japan Society for the
Promotion of Science (JSPS) Grant-in-Aid for Scientific
Research (22500060).

Wydanie publikacji zrealizowano przy udziale środków
finansowych otrzymanych z budżetu Województwa
Zachodniopomorskiego.

REFRENCES
[1] DAVID A. PADUA and MICHAEL J. WOLFE, “Advanced

compiler optimizations for supercomputers”,
Communications of the ACM, vol. 29, No. 12, pp.
1184-1201, Dec 1986.

[2] Akihiko Funo, Kouji Hirata, Yoshinobu Higami, Shinya
Kobayashi, “Optimistic Processing Protocol for Multiplexing in
External PC Grids", in Proc. Advanced Computer Systems (ACS
2010), Pomerania, Poland, (CD-ROM), Oct. 2010.

[3] Satoshi Takasuka, Kouji Hirata, Yoshinobu Higami, Shinya
Kobayashi, “Consideration of an Appropriate Program Segment
Size on Method of Concealing Purposes of Processing”, in Proc.
Advanced Computer Systems (ACS 2008), Miedzyzdroje,
Poland，(CD-ROM), Oct. 2008.

[4] Kensei Himeda, Kouji Hirata, Yoshinobu Higami, Shinya
Kobayashi, “Consideration of Characteristics of Programs for
Concealing Purpose of Processing in Distributed Computing
Systems”, in Proc. Advanced Computer Systems (ACS 2008),
Miedzyzdroje, Poland，(CD-ROM), Oct. 2008.

[5] Teruya Minamoto, “The guide of numerical calculation by C
language ~How to calculate, Algorithm, Program~”, Japanese
title “C-gengo ni yoru suchi keisan nyumon ~kaiho, arugorizumu,
puroguram~ ”, Saiensu-sha, Dec 2005(in Japanese).

Authors: Jun Kawano, Prof. Dr. Hiroshi Kai, Prof. Dr. Yoshinobu
Higami, Prof. Dr. Shinya Kobayashi, Graduate School of Science
and Engineering, Ehime University, 3 Bunkyou-cho, Matsuyama,
Ehime, 790-8577 Japan, E-mail: kawano@koblab.cs.ehime-u.ac.jp

