
198 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012

Dariusz BURAK

West Pomeranian University of Technology

Parallelization of the Block Encryption Algorithm Based on
Logistic Map

Abstract. In this paper the results of parallelizing the block encryption algorithm based on logistic map are presented. The data dependence
analysis of loops was applied in order to parallelize this algorithm. The OpenMP standard is used for presenting the parallelism of the algorithm. The
efficiency measurement for a parallel program is shown.

Streszczenie. W artykule zaprezentowano wyniki zrównoleglenia blokowego algorytmu szyfrowania opartego na odwzorowaniu logistycznym. W
celu zrównoleglenia algorytmu zastosowano analizę zależności danych. Celem przedstawienia równoległości algorytmu użyto standardu OpenMP.
Pokazano wyniki pomiarów efektywności programu równoległego. (Zrównoleglenie blokowego algorytmu szyfrowania opartego na
odwzorowaniu logistycznym).

Keywords: chaos-based encryption algorithm, logistic map, parallelization, OpenMP
Słowa kluczowe: algorytm szyfrowania oparty na teorii chaosu, odwzorowanie logistyczne, zrównoleglenie, OpenMP

Introduction
One of the very important features of cryptographic
algorithms is a cipher speed. This feature is very important
in case of block ciphers based on chaos theory because
they have to work with large data sets. Therefore, it is
important to parallelize the most time-consuming loops in
order to achieve faster processing using multiprocessors
and multi-core processors. Nowadays, there are many
descriptions of various block ciphers based on chaotic
maps, for instance [1], [2], [3], [4], [5], [6]. The important
issue of chaotic ciphers is program implementation. Unlike
parallel implementation of classical block ciphers, for
instance AES [7], IDEA [8] there are only few parallel
implementations of chaotic block ciphers, for instance [9]. It
looks like a research gap because only software or
hardware implementation will show real functional
advantages and disadvantages of encryption algorithms.
Considering this fact, the main contribution of the study is
developing a parallel algorithm in accordance with OpenMP
of the cipher designed by Kocarev and Jakimoski [10]
(called further KJ encryption algorithm) based on the
transformations of a source code written in the C language
representing the sequential algorithm.

The KJ Encryption Algorithm

The KJ encryption algorithm is a block encryption
algorithm developed by Kocarev and Jakimoski and
published in 2001 [10] based on logistic map that operates
on 64-bit data blocks with a 128-bit encryption.

An input plaintext block is partitioned into eight sub-
blocks, each one consists of 8 bits. The cipher consists of r
rounds of identical transformations applied in a sequence to
the plaintext block. Encryption transformation is given with:

xi ,2= x x− 1,1� f 0 ,
xi ,3= x x− 1,2� f 1 ,

(1) …
xi ,0= x x−1,7� f 6 ,
xi ,1= x x− 1,0� f 7 ,

where: i=1,...,r.

The functions f1,...,f7 have the following form:

(2) f j= f [xi− 1,1�...�xi− 1, j� zi− 1, j] ,

where: j=1,...,7 and f: M → M, M = {0,255}, is a map derived
from a chaotic map. f 0 = z i,0 and z i,0,..., z i,7 are the eight
bytes of the subkey z i which controls the ith round. The
output block is input in the next round, except with the last
round. The length of the ciphertext block is 64 bits. Each
round i is controlled by one 8-byte subkey z i. There are r
subkeys derived from the key in a procedure for generating
round subkeys. f is obtained via discretization of logistic
map.
Decryption process is similar to encryption one, where
round subkeys are applied in reverse order in comparison
with the encryption process.
More detailed description of KJ encryption algorithm is
given in [10] or [11].

Parallelization Process of the KJ Encryption Algorithm

Considering the fact that proposed algorithm can work in
block manner it is necessary to prepare a C language
source code representing the sequential KJ encryption
algorithm working in ECB mode of operation before we start
parallelizing process. The source code of the KJ encryption
algorithm in the ECB mode contains twenty one "for" loops.
Seventeen of them include no I/O functions.

In order to find dependences in program loops we have
applied Petit developed at the University of Maryland under
the Omega Project and freely available for both DOS and
UNIX systems. Petit is a research tool for analyzing array
data dependences [12], [13].

In order to present parallelized loops, we have used the
OpenMP standard. The OpenMP Application Program
Interface (API) [14], [15] supports multiplatform shared
memory parallel programming in C/C++ and Fortran on all
architectures including Unix and Windows NT platforms.
OpenMP is a collection of compiler directives, library
routines and environment variables which could be used to
specify shared memory parallelism. OpenMP directives
extend a sequential programming language with some
constructs: Single Program Multiple Data (SPMD)
constructs, worksharing constructs, synchronization
constructs and help us to operate on both shared and
private data. An OpenMP program begins execution as a
single task (called a master thread). When a parallel
construct is encountered, the master thread creates a team
of threads. The statements within the parallel construct are
executed in parallel by each thread in the team. At the end
of the parallel construct, the threads of the team are
synchronized. Then only the master thread continues

PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012 199

execution until the next parallel construct will be
encountered. To build a valid parallel code, it is necessary
to preserve all dependences, data conflicts and
requirements regarding parallelism of a program [14], [15].

The parallelization process of the KJ encryption
algorithm consists of the following stages:

 carrying out the data dependence analysis of a
sequential source code in order to detect
parallelizable loops,

 selecting parallelization methods based on source
code transformations,

 constructing parallel forms of for loops in
accordance with the OpenMP standard.

There are the following basic types of the data
dependences that occur in "for" loops [16], [17]:

 a Data Flow Dependence indicates that write-
before-read ordering that must be satisfied for
parallel computing,

 a Data Anti-dependence indicates that read-
before-write ordering should not be violated when
performing computations in parallel,

 an Output Dependence indicates a write-before
write ordering.

Additionally, control dependence [16], [17] determines

the ordering of an instruction i, with respect to a branch
instruction so that the instruction i is executed in correct
program order.

At the beginning of the parallelization process, we
carried out experiments with sequential KJ algorithm for an
about 10 megabytes input file in order to find the most time-
consuming loopsin this algorithm.

It appeared that the algorithm has two computational
bottlenecks: the first is enclosed in the function kj_enc()
and the second is enclosed in the function kj_dec(). We
developed the kj_enc() function in order to enable
enciphering the whichever number of data blocks and the
kj_dec() one for deciphering (by analogy with functions
included in the C language source code of the classic
cryptographic algorithms like DES- the des_enc(), the
des_dec(), LOKI91- the loki_enc(), the loki_dec()
or IDEA- the idea_enc(), the idea_dec() presented in
[18]). Thus the parallelization of these functions has a
unique meaning.
The bodies of the most-time consuming loops included in
these functions (the first loop is included in the
kj_enc()function, the second in the kj_dec()) are the
following:

for(l=0;l< PARALLELITY;l++) {
copy(tmplain, src[8*l+8]);
for (i=1;i<=rounds;i++) {
generatekey(newkey,key,i,sbox,rounds);
dst[8*l+2]=tmpplain[1]^newkey[0];
dst[8*l+3]=tmpplain[2]^sbox[newkey[1]
^tmpplain[1]];
dst[8*l+4]=tmpplain[3]^sbox[newkey[2]
^tmpplain[1]^tmpplain[2]];
dst[8*l+5]=tmpplain[4]^sbox[newkey[3]
^tmpplain[1]^tmpplain[2]^tmpplain[3]];
dst[8*l+6]=tmpplain[5]^sbox[newkey[4]
^tmpplain[1]^tmpplain[2]^tmpplain[3]
^tmpplain[4]];
dst[8*l+7]=tmpplain[6]^sbox[newkey[5]
^tmpplain[1]^tmpplain[2]^tmpplain[3]
^tmpplain[4]^tmpplain[5]];

dst[8*l]=tmpplain[7]^sbox[newkey[6]
^tmpplain[1]^tmpplain[2]^tmpplain[3]
^tmpplain[4]^tmpplain[5]^tmpplain[6]];
dst[8*l+1]=tmpplain[0]^sbox[newkey[7]
^tmpplain[1]^tmpplain[2]^tmpplain[3]
^tmpplain[4]^tmpplain[5]^tmpplain[6]
^tmpplain[7]];
copy(tmplain, dst[8*l+8]);
}
}.

for(l=0;l< PARALLELITY;l++) {
copy(tmpcipher,src[8*l+8]);
for (i=rounds;i>=1;i--) {
generatekey(newkey,key,i,sbox,rounds);
dst[8*l+1]=tmpcipher[2]^newkey[0];
dst[8*l+2]=tmpcipher[3]^sbox[newkey[1]
^dst[1]];
dst[8*l+3]=tmpcipher[4]^sbox[newkey[2]
^dst[1] ^dst[2]];
dst[8*l+4]=tmpcipher[5]^sbox[newkey[3]
^dst[1] ^dst[2]^dst[3]];
dst[8*l+5]=tmpcipher[6]^sbox[newkey[4]
^dst[1] ^dst[2]^dst[3]^dst[4]];
dst[8*l+6]=tmpcipher[7]^sbox[newkey[5]
^dst[1] ^dst[2]^dst[3]^dst[4]^dst[5]];
dst[8*l+7]=tmpcipher[0]^sbox[newkey[6]
^dst[1]^dst[2]^dst[3]^dst[4]^dst[5]^dst[6]];
dst[8*l]=tmpcipher[1]^sbox[newkey[7]^dst[1]
^dst[2]^dst[3]^dst[4]^dst[5]^dst[6]^dst[7]];
copy(tmpcipher,dst[8*l+8]);
}
}.

Taking into account a high degree of similarity of bodies

of these loops, we examine only the first loop. However, this
analysis is valid also in the case of the second loop.

The actual parallelization process of the first loop
consists of the three following stages:

 filling in the loop by the body of the
generatekey() function (otherwise, we cannot
apply a data dependence analysis)

 suitable variables privatization (l, i, ii, k, newkey,
sbox, tmpplain) using OpenMP (based on the
results of data dependence analysis);

 adding appropriate OpenMP directive and clauses
(#pragma omp parallel for private() shared()).

The steps above result in the following parallel form of

loop in accordance with the OpenMP standard:

#pragma omp parallel for private(l, i, ii,
k, newkey, sbox, tmpplain)
for(l=0;l< PARALLELITY;l++) {
…
}.

The second loop was parallelized in the same way as

the first one.

Experimental Results

In order to study the efficiency of the presented KJ
parallel code we used a computer with two Quad-Core
Intel® Xeon Processors 5300 Series - 1,60 GHz and the
Intel® C++ Compiler ver. 12.1 (that supports the OpenMP
3.1). The results received for a 20 megabytes input file
using two, four and eight cores versus the only one are
shown in Table 1.

200 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012

Table1. Speed-ups of the parallel KJ encryption algorithm in
ECB mode of operation

Number of
 processors

Number of
 threads

Speed-up
Encryption Decryption Total

2 2 1.92 1.99 1.45
4 4 3.50 3.70 1.90
8 8 6.00 6.40 2.30

The total running time of the KJ algorithm consists of the

following operations:
 data reading from an input file,
 subkeys generation,
 data encryption,
 data decryption,
 data writing to an output file (both encrypted and

decrypted text).

Thus the total speed-up of the KJ parallel algorithm

depends heavily on the four factors:
 the degree of parallelization of the loop included in

the kj_enc() function,
 the degree of parallelization of the loop included in

the kj_dec() function,
 the method of reading data from an input file,
 the method of writing data to an output file.

The results confirm that the loops included both the

kj_enc() and the kj_dec() functions are parallelizable
with relatively high speed-up.

The block method of reading data from an input file and
writing data to an output file was used. The following C
language functions and block sizes were applied:

 fread() function and 8192-bytes block for data
reading,

 fwrite() function and 128-bytes block for data
writing.

Using the fwrite() function is especially important;
choosing, for example, the fprintf() function we got much
longer time of executing our tasks.

Conclusions
In this paper, the parallelization process of the KJ

encryption algorithm which was divided into parallelizable
and unparallelizable parts was presented. We have shown
that the time-consuming "for" loops included in the functions
responsible for the encryption and decryption processes are
parallelizable. The experiments have shown that the
application of the parallel KJ encryption algorithm for
multiprocessor and multi-core computers would
considerably boost the time of the data encryption and
decryption. We believe that the speed-ups received for
these operations are satisfactory. Moreover, the parallel KJ
encryption algorithm can be also helpful for hardware
implementations or GPU implementations.

Wydanie publikacji zrealizowano przy udziale środków
finansowych otrzymanych z budżetu Województwa
Zachodniopomorskiego.

REFERENCES
[1] Nishio, Y., Sasase, I., Mori, S., A Secret Key Cryptosystem

Using a Chaotic Map, Trans. IEICE Japan, 73 (1990), No.7,
1041--1044

[2] F r id r i ch , J . , Symmet r i c C iphers Based On Two-
D imens iona l Chao t i c Maps , In t . J . Bifurcation and
Chaos, 8 (1998), No.6, 1259—1284

[3] Scharinger, J., Fast Encryption of Image Data Using Chaotic
Kolmogorov Flows, J. Electronic Imaging, 7 (1998), No.2,
318—325

[4] Yi, X., Tan, C.H., Siew, C.K., A New Block Cipher Based on
Chaotic Tent Maps, IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, Volume: 49,
Issue:12, (2002)

[5] Xua, S., Wang, J., Yang, S., A Novel Block Cipher Based on
Chaotic Maps, Congress on Image and Signal Processing, Vol.
3, (2008)

[6] Pareek, N.K., Patidar, V., Sud, K.K., Block cipher using 1D and
2D chaotic maps, International Journal of Information and
Communication Technology, Volume: 2, Issue: 3, (2010)

[7] Bielecki, W., Burak, D., Exploiting Loop-Level Parallelism in the
AES Algorithm, WSEAS Transactions on Computers, Issue 1,
vol. 5, January, (2006), pp. 125—133

[8] Bielecki, W., Burak, D., Parallelization of the IDEA Algorithm,
Lecture Notes in Computer Science, 3036, (2004), pp. 635—
638

[9] Burak, D., Chudzik, M., Parallelization of the Discrete Chaotic
Block Encryption Algorithm, , Lecture Notes in Computer
Science, 7204, (2012), pp. 323—332

[10] Kocarev, L., Jakimoski, G., Logistic Map as a Block Encryption
Algorithm, Physics Letters A,. 289(4-5), (2001), pp.199--206

[11] Pejaś J., Skrobek A., Chaos-Based Inforamtion Secutity,
Handbook of Information and Communication Security, (2010),
91—128

[12] Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T.,
Wonnacott, D., New User Interface for Petit and Other
Extensions. User Guide, (1996)

[13] The Omega Project: Frameworks and Algorithms for the
Analysis and Transformation of Scientific Programs,
http://www.cs.umd.edu/projects/omega/

[14] OpenMP Application Program Interface. Version 3.1, July
2011, (2011)

[15] Chapman, B., Jost, G., van der Pas, R., Using OpenMP -
Portable Shared Memory Parallel Programming, The MIT
Press, (2007)

[16] Aho, A., Lam, M., Sethi, R., Ullman, J., Compilers: Principles,
Techniques, and Tools (2nd edition), Prentice Hall, (2006)

[17] Allen R., Kennedy K., Optimizing compilers for modern
architectures: A Dependence-based Approach, Morgan
Kaufmann Publishers, Inc., (2001)

[18] Schneier B.: Applied Cryptography: Protocols, Algorithms, and
Source Code in C, Second Edition, John Wiley & Sons, 2
edition, (1995)

Author: dr inż. Dariusz Burak, Zachodniopomorski Uniwersytet
Technologiczny w Szczecinie, Wydział Informatyki, ul. Żołnierska
49 71-210 Szczecin, E-mail: dburak@wi.zut.edu.pl.

