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Abstract. In this paper the results of parallelizing the block encryption algorithm based on logistic map are presented. The data dependence 
analysis of loops was applied in order to parallelize this algorithm. The OpenMP standard is used for presenting the parallelism of the algorithm. The 
efficiency measurement for a parallel program is shown.   
 
Streszczenie. W artykule zaprezentowano wyniki zrównoleglenia blokowego algorytmu szyfrowania opartego na odwzorowaniu logistycznym. W 
celu zrównoleglenia algorytmu zastosowano analizę zależności danych. Celem przedstawienia równoległości algorytmu użyto standardu OpenMP. 
Pokazano wyniki pomiarów efektywności programu równoległego. (Zrównoleglenie blokowego algorytmu szyfrowania opartego na 
odwzorowaniu logistycznym). 
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Introduction 
One of the very important features of cryptographic 
algorithms is a cipher speed. This feature is very important 
in case of block ciphers based on chaos theory because 
they have to work with large data sets. Therefore, it is 
important to parallelize the most time-consuming loops in 
order to achieve faster processing using multiprocessors 
and multi-core processors. Nowadays, there are many 
descriptions of various block ciphers based on chaotic 
maps, for instance [1], [2], [3], [4], [5], [6]. The important 
issue of chaotic ciphers is program implementation. Unlike 
parallel implementation of classical block ciphers, for 
instance AES [7], IDEA [8] there are only few parallel 
implementations of chaotic block ciphers, for instance [9]. It 
looks like a research gap because only software or 
hardware implementation will show real functional 
advantages and disadvantages of encryption algorithms.  
Considering this fact, the main contribution of the study is 
developing a parallel algorithm in accordance with OpenMP 
of the cipher designed by Kocarev and Jakimoski [10] 
(called further KJ encryption algorithm) based on the 
transformations of a source code written in the C language 
representing the sequential algorithm. 
 
The KJ Encryption Algorithm 

The KJ encryption algorithm is a block encryption 
algorithm developed by Kocarev and Jakimoski and 
published in 2001 [10] based on logistic map that operates 
on 64-bit data blocks with a 128-bit encryption. 

An input plaintext block is partitioned into eight sub-
blocks, each one consists of 8 bits. The cipher consists of r 
rounds of identical transformations applied in a sequence to 
the plaintext block. Encryption transformation is given with:  

xi ,2= x x− 1,1� f 0 , 
xi ,3= x x− 1,2� f 1 , 

(1)    … 
xi ,0= x x−1,7� f 6 , 
xi ,1= x x− 1,0� f 7 , 

 
where: i=1,...,r. 

 
The functions f1,...,f7 have the following form: 

(2) f j= f [ xi− 1,1�...�xi− 1, j� zi− 1, j ] , 
 

 

    
where: j=1,...,7 and f: M → M, M = {0,255}, is a map derived 
from a chaotic map. f 0 = z i,0 and z i,0,..., z i,7 are the eight 
bytes of the subkey z i which controls the ith round. The 
output block is input in the next round, except with the last 
round. The length of the ciphertext block is 64 bits. Each 
round i is controlled by one 8-byte subkey z i. There are r 
subkeys derived from the key in a procedure for generating 
round subkeys. f is obtained via discretization of logistic 
map.  
Decryption process is similar to encryption one, where 
round subkeys  are applied in reverse order in comparison 
with the encryption process. 
More detailed description of KJ encryption algorithm is 
given in [10] or [11]. 
 
Parallelization Process of the KJ Encryption Algorithm 

Considering the fact that proposed algorithm can work in 
block manner it is necessary to prepare a C language 
source code representing the sequential KJ encryption 
algorithm working in ECB mode of operation before we start 
parallelizing process. The source code of the KJ encryption 
algorithm in the ECB mode contains twenty one "for" loops. 
Seventeen of them include no I/O functions. 

In order to find dependences in program loops we have 
applied Petit developed at the University of Maryland under 
the Omega Project and freely available for both DOS and 
UNIX systems. Petit is a research tool for analyzing array 
data dependences [12], [13]. 

In order to present parallelized loops, we have used the 
OpenMP standard. The OpenMP Application Program 
Interface (API) [14], [15] supports multiplatform shared 
memory parallel programming in C/C++ and Fortran on all 
architectures including Unix and Windows NT platforms. 
OpenMP is a collection of compiler directives, library 
routines and environment variables which could be used to 
specify shared memory parallelism. OpenMP directives 
extend a sequential programming language with some 
constructs: Single Program Multiple Data (SPMD) 
constructs, worksharing constructs, synchronization 
constructs and help us to operate on both shared and 
private data. An OpenMP program begins execution as a 
single task (called a master thread). When a parallel 
construct is encountered, the master thread creates a team 
of threads. The statements within the parallel construct are 
executed in parallel by each thread in the team. At the end 
of the parallel construct, the threads of the team are 
synchronized. Then only the master thread continues 
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execution until the next parallel construct will be 
encountered. To build a valid parallel code, it is necessary 
to preserve all dependences, data conflicts and 
requirements regarding parallelism of a program [14], [15]. 

The parallelization process of the KJ encryption 
algorithm consists of the following stages: 

 carrying out the data dependence analysis of a 
sequential source code in order to detect 
parallelizable loops, 

 selecting parallelization methods based on source 
code transformations, 

 constructing parallel forms of for loops in 
accordance with the OpenMP standard. 

There are the following basic types of the data 
dependences that occur in "for" loops [16], [17]: 

 a Data Flow Dependence indicates that write-
before-read ordering that must be satisfied for 
parallel computing, 

 a Data Anti-dependence indicates that read-
before-write ordering should not be violated when 
performing computations in parallel, 

 an Output Dependence indicates a write-before 
write ordering. 

 
Additionally, control dependence [16], [17] determines 

the ordering of an instruction i, with respect to a branch 
instruction so that the instruction i is executed in correct 
program order. 

At the beginning of the parallelization process, we 
carried out experiments with sequential KJ algorithm for an 
about 10 megabytes input file in order to find the most time-
consuming loopsin this algorithm. 

It appeared that the algorithm has two computational 
bottlenecks: the first is enclosed in the function kj_enc() 
and the second is enclosed in the function kj_dec(). We 
developed the kj_enc() function in order to enable 
enciphering the whichever number of data blocks and the 
kj_dec() one for deciphering (by analogy with functions 
included in the C language source code of the classic 
cryptographic algorithms like DES- the des_enc(), the 
des_dec(), LOKI91- the loki_enc(), the loki_dec() 
or IDEA- the idea_enc(), the idea_dec() presented in 
[18]). Thus the parallelization of these functions has a 
unique meaning. 
The bodies of the most-time consuming loops included in 
these functions (the first loop is included in the 
kj_enc()function, the second in the kj_dec()) are the 
following: 
 
for(l=0;l< PARALLELITY;l++) {   
copy(tmplain, src[8*l+8]); 
for (i=1;i<=rounds;i++) { 
generatekey(newkey,key,i,sbox,rounds);  
dst[8*l+2]=tmpplain[1]^newkey[0]; 
dst[8*l+3]=tmpplain[2]^sbox[newkey[1] 
^tmpplain[1]]; 
dst[8*l+4]=tmpplain[3]^sbox[newkey[2] 
^tmpplain[1]^tmpplain[2]]; 
dst[8*l+5]=tmpplain[4]^sbox[newkey[3] 
^tmpplain[1]^tmpplain[2]^tmpplain[3]]; 
dst[8*l+6]=tmpplain[5]^sbox[newkey[4] 
^tmpplain[1]^tmpplain[2]^tmpplain[3] 
^tmpplain[4]]; 
dst[8*l+7]=tmpplain[6]^sbox[newkey[5] 
^tmpplain[1]^tmpplain[2]^tmpplain[3] 
^tmpplain[4]^tmpplain[5]]; 

dst[8*l]=tmpplain[7]^sbox[newkey[6] 
^tmpplain[1]^tmpplain[2]^tmpplain[3] 
^tmpplain[4]^tmpplain[5]^tmpplain[6]]; 
dst[8*l+1]=tmpplain[0]^sbox[newkey[7] 
^tmpplain[1]^tmpplain[2]^tmpplain[3] 
^tmpplain[4]^tmpplain[5]^tmpplain[6] 
^tmpplain[7]];   
copy(tmplain, dst[8*l+8]);        
} 
}. 

 
for(l=0;l< PARALLELITY;l++) {  
copy(tmpcipher,src[8*l+8]);   
for (i=rounds;i>=1;i--) { 
generatekey(newkey,key,i,sbox,rounds);  
dst[8*l+1]=tmpcipher[2]^newkey[0]; 
dst[8*l+2]=tmpcipher[3]^sbox[newkey[1] 
^dst[1]]; 
dst[8*l+3]=tmpcipher[4]^sbox[newkey[2] 
^dst[1] ^dst[2]]; 
dst[8*l+4]=tmpcipher[5]^sbox[newkey[3] 
^dst[1] ^dst[2]^dst[3]]; 
dst[8*l+5]=tmpcipher[6]^sbox[newkey[4] 
^dst[1] ^dst[2]^dst[3]^dst[4]]; 
dst[8*l+6]=tmpcipher[7]^sbox[newkey[5] 
^dst[1] ^dst[2]^dst[3]^dst[4]^dst[5]]; 
dst[8*l+7]=tmpcipher[0]^sbox[newkey[6] 
^dst[1]^dst[2]^dst[3]^dst[4]^dst[5]^dst[6]]; 
dst[8*l]=tmpcipher[1]^sbox[newkey[7]^dst[1] 
^dst[2]^dst[3]^dst[4]^dst[5]^dst[6]^dst[7]]; 
copy(tmpcipher,dst[8*l+8]);    
} 
}. 

 
Taking into account a high degree of similarity of bodies 

of these loops, we examine only the first loop. However, this 
analysis is valid also in the case of the second loop. 

The actual parallelization process of the first loop 
consists of the three following stages: 

 filling in the loop by the body of the 
generatekey() function (otherwise, we cannot 
apply a data dependence analysis) 

 suitable variables privatization (l, i, ii, k, newkey, 
sbox, tmpplain) using OpenMP (based on the 
results of data dependence analysis); 

 adding appropriate OpenMP directive and clauses 
(#pragma omp parallel for private() shared()). 

 
The steps above result in the following parallel form of  

loop in accordance with the OpenMP standard: 
 
#pragma omp parallel for private(l, i, ii, 
k, newkey, sbox, tmpplain) 
for(l=0;l< PARALLELITY;l++) { 
… 
}. 

 
The second loop was parallelized in the same way as 

the first one. 
 
Experimental Results 

In order to study the efficiency of the presented KJ 
parallel code we used a computer with two Quad-Core 
Intel® Xeon Processors 5300 Series - 1,60 GHz and the 
Intel® C++ Compiler ver. 12.1 (that supports the OpenMP 
3.1). The results received for a 20 megabytes input file 
using two, four and eight cores versus the only one are 
shown in Table 1. 
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Table1. Speed-ups of the parallel KJ encryption algorithm in 
ECB mode of operation 

Number of 
 processors 

Number of 
 threads 

Speed-up 
Encryption Decryption Total 

2 2 1.92 1.99 1.45 
4 4 3.50 3.70 1.90 
8 8 6.00 6.40 2.30 

 
The total running time of the KJ algorithm consists of the 

following operations: 
 data reading from an input file, 
 subkeys generation, 
 data encryption, 
 data decryption, 
 data writing to an output file (both encrypted and 

decrypted text). 
 
Thus the total speed-up of the KJ parallel algorithm 

depends heavily on the four factors: 
 the degree of parallelization of the loop included in 

the kj_enc() function, 
 the degree of parallelization of the loop included in 

the kj_dec() function, 
 the method of reading data from an input file, 
 the method of writing data to an output file. 
 
The results confirm that the loops included both the 

kj_enc() and the kj_dec() functions are parallelizable 
with relatively high speed-up. 

The block method of reading data from an input file and 
writing data to an output file was used. The following C 
language functions and block sizes were applied: 

 fread() function and 8192-bytes block for data 
reading, 

 fwrite() function and 128-bytes block for data 
writing. 

Using the fwrite() function is especially important; 
choosing, for example, the fprintf() function we got much 
longer time of executing our tasks. 

 
Conclusions 
In this paper, the parallelization process of the  KJ 

encryption algorithm which was divided into parallelizable 
and unparallelizable parts was presented. We have shown 
that the time-consuming "for" loops included in the functions 
responsible for the encryption and decryption processes are 
parallelizable. The experiments have shown that the 
application of the parallel KJ encryption algorithm for 
multiprocessor and multi-core computers would 
considerably boost the time of the data encryption and 
decryption. We believe that the speed-ups received for 
these operations are satisfactory. Moreover, the parallel KJ 
encryption algorithm can be also helpful for hardware 
implementations or GPU implementations. 
 
Wydanie publikacji zrealizowano przy udziale środków 
finansowych otrzymanych z budżetu Województwa 
Zachodniopomorskiego. 
 
 
 
 

REFERENCES 
[1] Nishio, Y., Sasase, I., Mori, S., A Secret Key Cryptosystem 

Using a Chaotic Map, Trans. IEICE Japan, 73 (1990), No.7, 
1041--1044 

[2] F r id r i ch ,  J . ,  Symmet r i c  C iphers  Based On  Two-
D imens iona l  Chao t i c  Maps ,  In t .  J .  Bifurcation and 
Chaos, 8 (1998), No.6, 1259—1284 

[3] Scharinger, J., Fast Encryption of Image Data Using Chaotic 
Kolmogorov Flows, J. Electronic Imaging, 7 (1998), No.2, 
318—325 

[4] Yi, X., Tan, C.H., Siew, C.K., A New Block Cipher Based on 
Chaotic Tent Maps, IEEE Transactions on Circuits and 
Systems I: Fundamental Theory and Applications, Volume: 49, 
Issue:12, (2002) 

[5] Xua, S., Wang, J., Yang, S., A Novel Block Cipher Based on 
Chaotic Maps, Congress on Image and Signal Processing, Vol. 
3, (2008) 

[6] Pareek, N.K., Patidar, V., Sud, K.K., Block cipher using 1D and 
2D chaotic maps, International Journal of Information and 
Communication Technology, Volume: 2, Issue: 3, (2010) 

[7] Bielecki, W., Burak, D., Exploiting Loop-Level Parallelism in the 
AES Algorithm, WSEAS Transactions on Computers, Issue 1, 
vol. 5, January, (2006), pp. 125—133 

[8] Bielecki, W., Burak, D., Parallelization of the IDEA Algorithm, 
Lecture Notes in Computer Science, 3036, (2004), pp. 635—
638 

[9] Burak, D., Chudzik, M., Parallelization of the Discrete Chaotic 
Block Encryption Algorithm, , Lecture Notes in Computer 
Science, 7204, (2012),  pp. 323—332 

[10] Kocarev, L., Jakimoski, G., Logistic Map as a Block Encryption 
Algorithm, Physics Letters A,. 289(4-5), (2001), pp.199--206  

[11] Pejaś J., Skrobek A., Chaos-Based Inforamtion Secutity,  
Handbook of Information and Communication Security, (2010), 
91—128 

[12] Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., 
Wonnacott, D., New User Interface for Petit and Other 
Extensions. User Guide, (1996) 

[13] The Omega Project: Frameworks and Algorithms for the 
Analysis and Transformation of Scientific Programs, 
http://www.cs.umd.edu/projects/omega/ 

[14] OpenMP Application Program Interface. Version 3.1, July 
2011, (2011) 

[15] Chapman, B., Jost, G., van der Pas, R., Using OpenMP - 
Portable Shared Memory Parallel Programming, The MIT 
Press, (2007) 

[16] Aho, A., Lam, M., Sethi, R., Ullman, J., Compilers: Principles, 
Techniques, and Tools (2nd edition), Prentice Hall, (2006) 

[17] Allen R., Kennedy K., Optimizing compilers for modern 
architectures: A Dependence-based Approach, Morgan 
Kaufmann Publishers, Inc., (2001) 

[18] Schneier B.: Applied Cryptography: Protocols, Algorithms, and 
Source Code in C, Second Edition, John Wiley & Sons, 2 
edition, (1995) 

 
  
 
Author: dr inż. Dariusz Burak, Zachodniopomorski Uniwersytet 
Technologiczny w Szczecinie, Wydział Informatyki, ul. Żołnierska 
49 71-210 Szczecin, E-mail: dburak@wi.zut.edu.pl. 

 
 

 
 
 
 
 
 


