
192 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012

Jerzy PEJAŚ1, Imed EL FRAY1, Andrzej RUCIŃSKI2

West Pomeranian University of Technology in Szczecin (1), Unizeto Technologies S.A. (2)

Authentication protocol for software and hardware components
in distributed electronic signature creation system

Abstract. The paper presents the solution enabling to distribute different software and hardware components between public network system users
(application providers, electronic signature service providers and signing entities) in the manner ensuring the appropriate security level of signing
and verification/validation processes. The essential elements of the presented method are authentication protocols of the software and hardware
components. These protocols and supporting hardware components constitute the trusted computing base for the creation and verification of an
electronic signature in distributed systems. By the use of proposed protocols it is possible to meet the security requirements defined in the standard

PN ISO/IEC 15408 (so called “Common Criteria”) for EAL4+ category.

Streszczenie. W artykule przedstawiono sposób rozproszenia różnych komponentów programowych i sprzętowych pomiędzy użytkowników
systemu (dostawcę aplikacji, dostawcę usługi podpisu elektronicznego i podmiot podpisujący), pracujących w sieci publicznej, zapewniający
odpowiedni poziom bezpieczeństwa procesowi podpisywania lub weryfikowania podpisu. Istotnymi elementmi prezentowanego sposobu są
protokoły uwierzytelniania komponentów programowo-sprzętowych. Protokoły te, wraz ze wspierającymi je elementami sprzętowymi, stanowią
wiarygodną bazę obliczeniową dla rozproszonego systemu do składania i weryfikacji podpisu elektronicznego. Dzięki zastosowaniu proponowanych
protokołów możliwe jest spełnienie wymagań bezpieczeństwa określonych w PN ISO/IEC 15408 (tzw. Common Criteria) dla poziomu EAL4+.
(Protokół uwierzytelniania komponentów programowo-sprzętowych w rozproszonym systemie do składania podpisu elektronicznego).

Keywords: electronic signature creation system, authentication protocol, trusted computing base.
Słowa kluczowe: system generowania podpisu elektronicznego, protokół uwierzytelniania, zaufana baza obliczeniowa.

Introduction

The structure of distributed electronic signature creation
and verification system is presented on Fig.1 (compare [1]).
The most expensive and requiring the high level of security
and resiliency elements are under the full control of
Signature Service Provider (SSP) and Application Provider
(AP), while the signing entity has at his disposal Secure
Signature Creation Device (SSCD1) only.

Signature Service
Provider (SSP)

SSCD-1
SSCD-2

SSCD-n

Home Users’
Domain (hSSP)

mSigReq-OP

Application
Provider (AP)

SigReq-STD SigResp-STD

mSigResp-OP

Home User’s Domain

Fig.1. Three-parties functional scheme of a distributed Signature
Creation System (SCS) in Home Operator Domain

It is assumed that the signing entity uses the standard
PC host (his own or available in a public location)
connected to the network and equipped with PIN-pad
integrated with a smartcard reader; additionally he/she has
at his/her disposal an appropriate smartcard with crypto-
controller (as the mobile SSCD).

One of the elements of the distributed signature creation
system (Fig.1) is a publicly available database of electronic
document templates. This base is maintained by AP or the
issuers of templates. To sign any document the signing
entity should take an appropriate template from the
template data base, fills it with the contents and delivers to
AP in the secure manner. After the reception of the
document AP verifies its compliance with the template and
sends to SSP the request to init signature creation process
– Standard Sign Request (SigReq-STD). SSP verifies the

1 Alternatively this role could be played by his/her mobile

phone and SIM card; both together enable to establish
trusted path and channel.

syntax and semantics of the form intended to sign, prepares
Data To Be Signed (DTBS), presents them to the signing
entity, and finally sends Signature Request (mSigReq-OP)
to the signing entity (more precisely: to the mobile SSCD).
SSCD creates the signature and returns its value to the
system of SSP (mSigResp-OP). SSP formats the final form
of electronic signature and returns it (SigResp-STD) to AP.

The functional diagram from Fig.1 creates so called
“home” domain (hSSP). One can imagine many such
independent domains. With a large number of independent
SSPs such a solution is cumbersome and costly; especially
from AP point of view, because they have to perform
registration procedure with each SSP and enter to
appropriate commercial contracts.

In practice, any Signature Creation Application (SCA)
should provide the user the opportunity to create an
electronic signature in its home domain and in visited
domains as well. Such a possibility can be created if SSP
can interconnect using another service (e.g. roaming
services for electronic signatures) and standard interfaces.
This solution significantly simplifies the operation of AP
eliminating the need to register in each SSP.

The trilateral functional diagram of a distributed
signature creation system (presented on Fig.1) consists of
the following elements:

 signature creation system (SCS): it enables to create
an electronic signature and consists of SSCD and
SCA, where
o SSCD: device used for generation or usage of

private key needed to create signature (the
smartcard can be an example),

o (mobile) signature creation application
(MSCA/SCA): application within the signature
creation system that allows to prepare data for
signature creation; MSCA/SCA consists of two
sub-applications: one functioning on the end
entity side (SCA-EE) and another on the side of
the signature service provider (SCA-SSP),

 end entity (EE): a signing entity (a signer) that
creates the signature using SCA-EE application,

 SSP: entity enabling the generation of signatures by
signing entities that authorizes and authenticates
each created electronic signature cooperating with

PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012 193

application provider (AP), signing entity and its
signature creation device (SCD),

 AP: entity requiring the creation of electronic
signature from the signing entity.

It results from above that software and hardware
components of SCS are distributed between the two main
participants in the system: the signing entity and the
signature service provider. It is obvious that the way the
distribution is done affects the functioning of the system, as
well as its safety; the measure may be primarily the degree
of confidence in the services provided by the system.

Motivation and contribution

The SCS working in distributed signature creation
environment (SCE) should guarantee the security of
a signing act for the signer. In practice no user is able to
evaluate himself whether the system, which the signature is
created in, is secure or not. Even an expert in electronic
signature technology and IT security has to perform
relevant investigations and tests to make such an
evaluation. Therefore, the following extreme assumptions
should be made: (1) a user’s computer or system has to be
trusted, (2) a user’s computer or system does not need to
be trusted at all.

We are sure that high level of SCS security is
guaranteed then and only then if SSCD locks the usage of a
private key before the successful mutual authentication of
crucial SCS components and SSCD. In such a case an
interoperability of SSCD is limited to the relevant dedicated
SCE.

In further part of this paper, under the assumption that a
user’s computer or system is untrustworthy, we propose a
functional model of distributed signature creation
application, a trusted computing base for SCS, and finally, a
protocol for the authentication of software and hardware
components. The proposed system enables the user to
create an electronic signature if and only if the SSCD being
at his/her disposal recognizes an offered SCE as a secure
one and ensuring the proper protection against different
threats (e.g. the malicious codes) attempting to forge
electronic signatures.

Structure of signature creation application (SCA)

Each of the software components involved in the
process of signature (e.g. [3, 4]) can be associated with
SCA-EE or SCA-SSP (if this is technically feasible and
acceptable in terms of functionality and security of the
system). Particularly, it is relevant for three essential
categories of components used in the system:

 components responsible for the document and
attributes presentation to the signer (category P),

 components responsible for data to be signed
preparation (category S),

 components responsible for SCD interaction
(category D).

It is possible to implement different functional models of
SCA, which depend on where there are three main
categories of components.

If we assume (due to the adopted philosophy of building
trust in a distributed system of electronic signature creation)
that the trusted path and channel (see: [5]) are built
between SSCD and a trusted module TRSM (at SSP side),
it is worth taking into account only those models in which
the components of a category D appear on SCA-SSP side,
and additionally the model E as an interesting alternative for
integrated application. As the result feasible models of SCA
are chosen and presented in Tab.1.

The components of category P, S and D can also be
seen as three interrelated specialized servers (logical or

physical ones), called further appropriately server P, server
S and server D, cooperating with each other, which carry all
the features of the SCA. It is obvious that the proper
distribution of tasks between SCA-EE and SCA-SSP, and
also their proper configuration, allows to obtain any model
from those presented in Tab.1.

Tab. 1 – Practically feasible models of SCA

Model
Part SCA-EE Part SCA-SSP

P S D P S D

model E yes Yes yes No no no

model D yes Yes no No no yes

model PD no Yes no Yes no yes

model DS yes No no No yes yes

model PSD no No no Yes yes yes

It is assumed that the server P is responsible for

interactions with a user, and the server S – for interactions
with an application provider. Then the server-based
environment for the electronic signature creation has the
form shown on Fig.2.

SCS

User

MSCA

Application
Provider (AP)

Server P Server S

SSCD

Server D

Signature Creation Environment (SCE)

Fig.2. Model of signature creation environment with servers P, S
and D

Further the model DS will be considered only. In this
model the server responsible for signed data and attributes
presentation (server P) is implemented at the signing
entity’s host and both other servers (server D and server S)
– on the side of SSP. We assume that all components
responsible for a secure entering of signing entity
authentication data (e.g. PIN) and other secrets, and ones
responsible for SSCD service, are in a hardware module
SBB (it is PIN-pad or its equivalent in ATM, etc.). The basic
trusted component in the system is TRSM (Tamper
Resistant Security Module). From this module is derived the
trust for other components of the system, especially for
software and hardware components of server P (see
below).

Trusted computing base for SCS

Trust is an intuitive concept, reflecting the degree of
belief that someone or something in a particular situation is
behaving as expected. The level of this belief is a measure
of relationship’s certainty between the relying parties. There
are three types of devices (from Fig.3) which have to act as
expected: secure signature creation devices (SSCD),
hardware cryptographic modules (TRSM, HSM) and PIN-
pads (or equivalent devices intended to enter credentials in
secure manner).

The trust in a system, like the distributed signature
creation system, cannot be built without a reliable (trusted)

194 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012

hardware modules built into the devices listed above.
Architecture of such modules can be compliant, as an
example, with the proposal of Trusted Computing Group,
which prepared the industrial standard for such a type of
module, named Trusted Platform Module (TPM). TPM
consists of components, which operate in accordance with
expectations, and the trust to their performance is verified
by accredited laboratories evaluating their conformance
with ISO/IEC 15408 standard requirements (so called
“Common Criteria”).

Trust in the case of hardware modules means that they
will never operate faulty, and if that happens, it will be easy
to detect. This trust (further called „the base trust”) is limited
to a particular module or a set of modules, and does not
subject to verification (justification). However, form this trust
so called “derivative trust” can be derived, which means that
the trusted module can ensure reliability of another module
(or group of modules, or group of software functionalities). If
the trusted module determines that the reliability of another
module (or group of modules, or group of software
functionalities) is justified, then trust limits are extended and
from that moment apply also to above checked
components.

The process of trust extension can be continued both
based on the elements “with the base trust”, as well as on
the basis of components whose trust has been verified.

Justification of transitive trust in the case of new
components requires to define and save within the trusted
module some information allowing to extend the trust within
a distributed signature creation system. This information
includes Data Registration Modules (DRMs) and
Cryptographic Keys Modules (CKMs).

DRMs allow to store information concerning the current
configuration of trusted module. This is important if the
current module configuration must achieve a state in which
it is possible to perform sensitive operations, such as a
digital signature creation. Information concerning the
current module configuration is stored in a specially
protected register and associated with operations
performing with the use of module (requests and
appropriate responses), internal module states and
parameters (constant or changing during the operation of
the module). The varying states of the module, as well as
the parameters, are treated as current measurements of the
module integrity parameters, and for them the cumulative
value of the hash function is calculated. If it is assumed that
at the time ti the value of DRM is drmi, then the updated
value of DRM at the time ti+1 is:

(1)  ii1i adrmhdrm  ,

where h(...) – a cryptographic hash function, and ai – the
current measurement of the module integrity parameters.
The module may have more than one register, which is
useful if more than one user communicate with the module.
The dialogue with the module is always initiated by the user
who sends an initiation request with a random challenge.
The module reserves one of its register, resets its state and
register value, calculates a new register initial value pcr0
based on Eq. (1), where the value of parameter a0 equals
the value of random challenge sent by the user. The value
pcr0 is sent back to the user, and from this moment the
module and the user update its value independently,
according to Eq. (1).

Each module stores stationary and dynamic/transferable
keys. Stationary keys are associated with its module only
and cannot be sent from one module to another, nor
transferred between them (even if it is possible to store
them in an encrypted form outside the module). Inability to
transfer stationary keys prevents their "substitution" by

dummy keys to simulate a real device.
Dynamic/transferable keys can be transferred between
modules. This occurs most often in the case of symmetric
session keys that are created as a result of the successful
mutual authentication of modules.

There are the following keys in the trusted module:
 the stationary pair of asymmetric keys (DK), used for

confidential communication to a module of
executable code or authentication/authorizing data
belonging to the owner of the module,

 the public key of dynamic/transferable pair of
asymmetric keys (CAK), intended to ensure
authenticity of executable code or
authentication/authorizing data belonging to the
manufacturer of the module,

 the stationary pair of asymmetric keys (AK), of which
the private key is used for signing messages
exchanged with the environment during the
execution of a module authentication protocol
module intended to verify its identity,

 the stationary pair of asymmetric keys (SK), of which
the private key is used for signing data whose
source of origin is the module only; particularly these
data are DRMs.

There are no certificates issued for public keys of type
DK and CAK. It means that the private key DK (unique for
each module) must be protected from disclosure, and the
public key CAK must be protected from modification. A
combination of keys of type CAK and DK allows for reliable
loading of module manufacturer’s executable code to a
given module belonging to a particular owner.

The other two public keys of type AK and SK are subject
to a certification process. Certificates are issued by a
domain certification authority, which can be subordinate to
the Root CA. The public key of the Root CA is stored within
the module protected memory at the time of assigning the
module its owner. In the case when keys of type AK and SK
are valid for short periods of time, two different key pairs
can be replaced in use by the only one pair of keys.

During normal operation the module also generates
additional dynamic/transferable keys, which can be shared
with other trusted modules. However, the transfer of keys
can be accomplished after previous mutual authentication
of modules.

Authentication of software and hardware components

In any distributed system, whose correct operation
depends on the exchange of information between its
distributed components, a reliable identification of both end
points of communication lines (i.e. the sender and recipient
of information) should be ensured. From the perspective of
the overall system security, construction and structure of
the end point is just as important as the communication
protocol used.

It is assumed in the distributed signature creation
system that the module with the base trust is always the
main point of communication; through this module all
messages exchanged between the system components are
transmitted and received. Three key endpoints are
distinguished in the distributed signature creation system
(see: Fig.3):

 cryptographic module (TRSM) physically connected
to the server D; this module is involved in each
transaction of an electronic signature creation,
authenticating the server P environment and
authorizing the signing entity,

 secure signature creation device (SSCD) with
installed private key used by the signing entity for
secure signature creation,

PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012 195

 PIN-pad-like device, equipped with a keyboard for
secure entry of signing entity authentication data
(PIN) and other sensitive data (e.g. responses for
TRSM challenges), a smartcard reader and trusted
hardware module (component with possibilities
similar to SSCD).

It is possible, on the base of trusted components built in
TRSM, SSCD and PIN-pad, to extend the trust for the
whole of device, including the software responsible for
device functionality. The trust constructed in this way allows
to perform authentication protocols between two
communication endpoints in a secure manner and to extend
the trust area for each end component of this connection.

Components of distributed signature creation system
with four distinguished endpoints of communication lines
are shown on Fig.3. These connections include
communication between:

 trusted PIN-pad and trusted TRSM (secure
connection supported by DAC component),

 trusted SSCD and trusted TRSM (secure path and
secure channel [5] supported by DAC component),

 server D and server S (software SDAC components
are endpoints on both sides of connection),

 server P and server S, supported by software PAC
components.

S
D

Fig.3 Trusted path and trusted communication channels with one-
way or mutual authentication

The first two connections have trusted modules in their

endpoints. Therefore it is possible to build two secure
connections between them and to establish the trust in this
security. There are:

 secure communication connection
PINpad_TRSM_MutualAuth between PIN-pad and
TRSM, created as a result of positive completion of
mutual authentication protocol compliant with
ISO/IEC 9798-3 standard [8, 9]; authentication and
session keys - established in this protocol – are
under control of trusted PIN-pad module and TRSM,

 trusted path and trusted channel
SmartCard_TRSM_MutualAuth between SSCD and
TRSM, created as a result of positive completion of
mutual authentication protocol compliant with
ISO/IEC 9798-3; authentication and session keys -
established at the completion of authentication
protocol - are under control of SSCD and TRSM.

Two other connections are built without the participation
of trusted hardware modules. The trust in the safety of
these connections depends in this case entirely on trust in

software components PAC (servers P and S) and SDAC
(servers S and D). While in the case of SDAC components
(servers S and D) the trust may be justified, the justification
for trust in PAC component (server P) is impossible. For this
reason the following can be assumed:

 SDAC_SDAC_MutualAuth between server D and
server S is bilaterally secure communication
connection, created as a result of positive
completion of mutual SSL/TLS authentication at the
application level; authentication keys are installed in
TRSM and HSM modules respectively; after the
completion of authentication session keys are under
control of SDAC components in servers D and S
respectively,

 PAC_PAC_OneWayAuth between server P and
server S is unilaterally secure communication
connection, created as a result of positive
completion of unilateral SSL/TLS authentication at
the application level, in which server S is
authenticated only; authentication keys are installed
in HSM module; after the completion of
authentication session keys are under control of
PAC components in servers P and S respectively.

Secure communication connections, trusted paths and
channels are created as a result of completion of protocols
with the same names. It should be noted that the
presentation of a document to be signed and signature
creation follows the all protocols and obtaining the state of
SM (so called „secure messaging” state, which the trusted
channel and path are established in). Obtaining SM state
means that each of trusted system components extended
its trust with two other items, what is significant because
from this moment the signing entity has full guarantees that
its SSCD “speaks” only to this PIN-pad, which has the card
inside the reader, and only to this TRSM module, which the
secure channel and path have been created with.

Trusted paths, channels and secure communication
connections (PINpad_TRSM_MutualAuth between PIN-pad
and TRSM module, and SmartCard_TRSM_MutualAuth
between SSCD and TRSM module) are built on the base of
authentication keys AK and their certificates. Certificates
are issued by certification authorities associated with
particular SSP domain (so called – domain certification
authorities), which are further denoted as CAi. CAi can be
root CA for each of the domains or subordinated to one root
CA. CAi and trusted modules (PIN-pads, TRSMs and
SSCDs) have unique identifiers assigned to create a
general identifier of the unit (OIU) in a domain managed by
the i-th SSP.

The structure of certificates is similar to this proposed in
[7], and additionally in the case of SSCD it is so called card
verifiable certificate format compliant with [11].

The mechanism of management of authentication key
certificates and secure temporary replacement of those
keys described in [11] allows, after establishment of CAs
hierarchical structure, to transfer the trust through PIN-pad
to TRSM and mutual authentication of SSCD and TRSM.

The authentication protocol PINpad_TRSM_MutualAuth
is presented below. The authentication protocol
SmartCard_TRSM_MutualAuth is more complex, and it is
the reason why it is omitted in this paper.

Example of PINpad_TRSM_MutualAuth authentication
protocol

The basic mutual authentication protocol
PINpad_TRSM_MutualAuth is performed between PIN-pad
(the client) and TRSM module (the server). For the purpose
of the protocol the following denotations are fixed:

196 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012

K PINpad Manager, further called „the client”,
implemented on PIN-pad side, active in mutual
authentication and session keys establishment for
confidentiality and integrity protection; additionally it
controls communication with the server P via SBB
driver and A module,

A a trusted module associated with PIN-pad (e.g. SIM),
T TRSM Manager (TRSM-M), further called „the

server”, implemented on TRSM side, active in
mutual authentication and session keys
establishment for confidentiality and integrity
protection; additionally it controls communication
with PIN-pad via DAC component and B module,

B a trusted module associated with TRSM.
PINpad_TRSM_MutualAuth protocol is performed

according to the following steps:
1) the server T initiates PINpad_TRSM_MutualAuth

protocol,
2) the server T then instructs the cryptographic module

B to generate a random challenge RB
T  B: generate random

3) the cryptographic module B generates the challenge
RB and sends it back to the server T

B  T: RB
4) the server T creates a token TokenB of the form

TokenB = RB || TRSM_ID,
where TRSM_ID is a type OIU identifier assigned to
TRSM, and it is also included in the authentication
certificate of this module

5) the server T sends the token TokenB to the client K
T  K: TokenB

6) the client K initiates PINpad_TRSM_MutualAuth
protocol and registers received information included
in the token TokenB,

7) the client K then instructs the cryptographic module
A to generate a random challenge RA

K  A: generate random
8) the cryptographic module A generates the challenge

RA and sends it back to the client K
A  K: RA

9) the client K creates a preliminary token preTokenAB
of the form

preTokenAB = RA || RB || Tekst2,
where Tekst2 is of the form

Tekst2 = TRSM_ID
and TRSM_ID is TRSM module identifier received in
step 4

10) the client K sends preTokenAB to the cryptographic
module A with the signature creation request

K  A: preTokenAB
11) the cryptographic module A calculates the digital

signature sSA(preTokenAB) and sends it back to K
A  K: sKA(preTokenAB)

12) the client K creates a token TokenAB of the form
TokenAB = RA || Tekst2 ||
sKA(preTokenAB) || CertPathPINpad,

where CertPathPINpad is a complete certification
path for PIN-pad’s certificate CertPINpad; PIN-pad is
the signatory of information included in preTokenAB
(or it is signed on behalf of PIN-pad); the certification
path leads from PIN-pad’s certificate to the certificate
of domain CAi

13) the client K sends TokenAB to the server T
K  T: TokenAB

14) the server T verifies TokenAB in the following way:
 it verifies the signature of client included in

TokenAB (it includes the recovery of certification
path leading from CertPINpad certificate to CA-

root’s public key of and the verification of all
certificates included in this path),

 it checks if the random number RB and
TRSM_ID identifier, both transferred to the client
in step 5, are the same as the values included in
the signed preTokenA

15) the server T next instructs its cryptographic module
to generate 56 bytes of key material KAB (this key
material is then used to establish three 8-bytes keys
of 3DES algorithm, three 8-bytes keys of message
authentication algorithm and 8 bytes of initial value
for the counter used in CBC ciphering mode)

T  B: generate random
16) the cryptographic module B generates KAB and

sends it back to the server T
B  T: KAB

17) the server T creates a preliminary token
preTokenBA1 of the form

preTokenBA1 = RB || RA || KAB ||
Tekst3,

where
Tekst3 = PIN_padID

and PIN_padID is a type OUI identifier assigned to
PIN-pad

18) the server T sends preTokenBA1 to the
cryptographic module B with the signature creation
request

T  B: preTokenBA1
19) the cryptographic module B calculates the digital

signature sSB(preTokenBA1) and sends it back to T
B  T: sTB(preTokenBA1)

20) the server T then instructs the cryptographic module
B to generate the third random value RC

T  B: generate random
21) the cryptographic module B generates RC and

sends it back to the server T
B  T: RC

22) the server creates a preliminary token preTokenBA2
of the form

preTokenBA2 = KAB || RB || RA || RC
|| Tekst3 || sTB(preTokenBA1)

23) the server T instructs its cryptographic module to
generate 24 bytes of key KEnv (used by 3DES
algorithm)

T  B: generate random
24) the cryptographic module B generates KEnv and

sends it back to the server (a nie: client) T
B  T: KEnv

25) the server T sends preTokenBA2 to the
cryptographic module B with a request to encipher
this token using the key KEnv and 3DES algorithm

T  B: preTokenBA2
26) the cryptographic module B enciphers preTokenBA2

and sends it back to the server T
B  T: eTB(preTokenBA2)

27) the server T then creates a preliminary token
preTokenBA3 of the form

preTokenBA3 = KEnv || encAlgorithmID
|| PIN_padID,

where PIN_padID is PIN-pad identifier, and
encAlgorithmID is the identifier of 3DES algorithm
used to encipher preTokenBA2

28) the server T sends preTokenBA3 to the
cryptographic module B with the request to create an
envelope with the use of client’s (PIN-pad) public
key; the envelope is enciphered in OAEP mode –
according to PKCS#1 recommendation [12]

T  B: preTokenBA3

PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012 197

29) the cryptographic module B creates the envelope
env(preTokenBA3) and sends it back to the server T

B  T: env(preTokenBA3)
30) the server T creates the token TokenBA of the form

TokenBA = PIN_padID ||
encAlgorithmID || len_eTB ||
eTB(preTokenBA2) || lenEnv ||
env(preTokenBA3) || CertPathTRSM,

where CertPathTRSM is a complete certification
path for the certificate CertTRSM, PIN_padID is PIN-
pad identifier, encAlgorithmID is an identifier of
enciphering algorithm used to encrypt preTokenBA2,
len_eTB – the length of the ciphertext eTB(...) in
nbytes, and lenEnv is the length of envelope env(...)
in bytes.

31) the server T sends TokenBA to the client K
T  K: TokenBA

32) the client K decrypts the envelope firstly, then it
checks PIN_padID and, if it is proper one, decrypts
TokenAB using the enciphering algorithm with
encAlgorithmID identifier; for the purpose of token
verification the following is performed:
 verification of the server’s signature included in

TokenieBA (it includes the recovery of
certification path leading from CertTRSM
certificate to CA-root’s public key of and the
verification of all certificates included in this path)

 checking if the random number RB, transferred
to the client in step 5, is the same as the values
included in the signed tokens preTokenBA1 and
preTokenBA2

 checking if the random number RA, transferred
to the server in step 13, is the same as the value
included in the signed token preTokenBA

 checking if PIN_padID identifier is its own
identifier

33) the client K creates a preliminary preTokenABA of
the form

preTokenABA = RC || SecretSessionID
|| TRSM_ID,

where SecretSessionID is a secret session identifier,
and encrypts this token using the session key
determined on the base of key material KAB,

TokenABA = eKK(preTokenABA)
34) the client K sends TokenABA to the server T

K  T: TokenABA
When the protocol PINpad_TRSM_MutualAuth is

completed, the client (PIN-pad) and the server (TRSM)
share a confidential key material KAB (including the counter,
which can be used for the numbering of packets sent
between the parties). On the base of key material both
parties create session keys for messages encryption and
authentication.

Since the establishment of session keys further
exchange of data between PIN-pad and TRSM is performed
in a confidential manner (requests/responses frames are
encrypted).

4. Conclusions

The concepts of trusted modules presented in the paper
and authentication protocols designed on that base have
been implemented by Unizeto Technologies S.A. in the
system proCertum dE-Signature. These protocols unit
together with the hardware and software components
constitute a reliable calculation basis for the whole system
of secure signature creation. This ensures that the
operating of proCertum dE-Signature must be preceded by
a mutual authentication between PIN-pad-like device and

TRSM, and between SSCD and TRSM, and that after the
signing entity call of the proper stage of signature creation -
further implementation of the protocol depends on the
successful completion of mutual authentication between
SSCD and TRSM.

The security of authentication protocols has been the
subject of formal analysis performed by a team from the
Technical University of Gdansk. This analysis confirmed the
resistance of protocol against known attacks specific for this
type of protocols (see [13, 14, 15]).

Wydanie publikacji zrealizowano przy udziale środków
finansowych otrzymanych z budżetu Województwa
Zachodniopomorskiego.

REFERENCES
[1] ETSI TR 102 203 Mobile Commerce (M-COMM) - Mobile

Signatures - Business and Functional Requirements, V1.1.1
(2003-05), Technical Report

[2] TCG Specification Architecture Overview Specification,
Revision 1.2, 28 April 2004,

[3] CEN CWA 14170 Security Requirements for Signature
Creation Applications, July 2001

[4] ETSI TR 102 206 Mobile Commerce (M-COMM) - Mobile
Signature Service - Security Framework, V1.1.3 (2003-08),
Technical Report

[5] Dz.U. 2002 nr 128 poz. 1094 Rozporządzenie Rady Ministrów
z dnia 7 sierpnia 2002 r. w sprawie określenia warunków
technicznych i organizacyjnych dla kwalifikowanych podmiotów
świadczących usługi certyfikacyjne, polityk certyfikacji dla
kwalifikowanych certyfikatów wydawanych przez te podmioty
oraz warunków technicznych dla bezpiecznych urządzeń
służących do składania i weryfikacji podpisu elektronicznego (in
Polish)

[6] Brickell E., Camenisch J., Chen L., Direct anonymous
attestation, in Proceedings of 11th ACM Conference on
Computer and Communications Security, ACM Press, 2004

[7] EMV2000 Integrated Circuit Card Specification for Payment
Systems: Book 2 - Security and Key Management, Version 4.0,
December, 2000

[8] RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism,
August 2001

[9] ISO/IEC 9798-3:1998 Information technology -- Security
techniques -- Entity authentication -- Part 3: Mechanisms using
digital signature techniques

[10 ISO/IEC 9796-2 Information technology -- Security techniques -
- Digital signature schemes giving message recovery -- Part 2:
Integer factorization based mechanisms

[11] EN 14890-1:2008 Application interface for smart cards used as
secure signature creation devices. Basic services, December
2008

[12] PKCS #1: RSA Cryptography Standard RSA Laboratories,
v.2.1, June 14, 2002

[13] Olszewski M., A model-based approach to analysis of security
protocols. a case study, in TEHOSS 2005: IEEE International
Conference on Technologies for Homeland Security and
Safety, Proceedings: Gdansk, Poland, September 28-30, 2005,
Gdansk Univ. Technol. 2005, pp. 221-226

[14] Jakubowska G., Dembiński P., Penczek P., Szreter M.,
Simulation of Security Protocols based on Scenarios of
Attacks, Fundamenta Informaticae, Vol. 93 n.1-3, pp.185-203,
January 2009

[15] Olszewski M., Cyra Ł., An integrated framework for security
protocol analysis, Proceedings of the 2008 ACM symposium on
Information, computer and communications security, March 18-
20, 2008, Tokyo, Japan

Authors: Jerzy Pejaś, PhD eng., Imed El Fray, PhD eng. West
Pomeranian University of Technology in Szczecin, Faculty of
Computer Science and Information Technology, e-mail: {jpejas,
ielfray}@wi.zut.edu.pl; Andrzej Ruciński, Unizeto Technologies
S.A., Szczecin.

