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Abstract. The integral Laguerre transform is generalized by introduction of scale factor and argument to arbitrary power. The possibility of usage of 
such transforms for approximation of sensor output data, filtration of the signals in linear filter models and numerical determination of signal 
derivatives is described. 
  
Streszczenie. Całkowa transformata Laguerre’a może być uogólniona za pomocą wprowadzenia współczynnika skalowania i argumentu w dowolnej 
potędze. Opisano wykorzystanie takich całkowych transformat do aproksymacji danych wyjściowych sensorów, filtracji sygnałów w liniowych 
modelach filtrujących i wyznaczenia pochodnych dla sygnałów. (Aproksymacja danych wyjściowych sensorów za pomocą transformaty 
Czebyszewa-Laguerre’a) 
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Introduction 

The application of sensors for measuring the 
parameters of oscillating processes requires to develop the 
appropriate mathematical software for processing the 
gathered data sets. The basis for the solution of such 
problems is the spectral representation of the functions in 
orthogonal bases [1-2]. A comparative analysis of the 
functions in Fourier, Haar, and Walsh bases has shown that 
not all criteria imposed on the solutions are satisfied. 
Hence, the methods in other orthogonal bases such as 
Jacobi, Chebyshev-Laguerre, and Hermite are developed 
[3-5]. 

It seems reasonable to use the Chebyshev-Laguerre 

polynomials ( ), 1nL t     for research on the oscillating 

processes in time. The disadvantage of these polynomials 
is the exponential increase with time at high orders. This 
disadvantage limits the research area in which the 
polynomials are used because there are calculation 
difficulties emerging when the summation of appropriate 
series for high values of the time variable t is performed. 
This problem can be solved by inserting a scale factor, but 
that change in the scale factor entails the repetition of the 
problem solution and causes to the instability in the 
calculation of the function which is decomposed into 
orthogonal series. 

The aim of this work is the generalization of Chebyshev-
Laguerre basis in order to create a method of its application 
for determining the parameters of approximation of 
oscillating functions. That method should allow to restore 
the values of both the function and its derivatives at given 
points with reasonable accuracy of approximation, which 
should be matched with the accuracies of measuring 
devices, i.e. sensors. 

 
Results of theoretical and computational 
considerations 

1. In the classic case, the Chebyshev-Laguerre 
transform fn of the original f(t) is expressed by the formula: 
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where λ >1 is any finite parameter, and Ln are Chebyshev-
Laguerre polynomials. 

Let us generalize the Chebyshev-Laguerre transform 


nf  of function f(t) in the following way: first introduce the 

parameters µ>0,  , 0  that are chosen 

adequately to the task. In this case, the generalized 
Chebyshev-Laguerre transform could be written as follows: 
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Then the original f(t) of integral transform (2) can be 
calculated as: 
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where Г(x) is the Euler’s function [2]. 
 If the discrete values of the function which is 
decomposed into the series (3) are known, then for the 

calculation of the generalized spectra of 
nf  the optimal in  

L2 class quadrature formula is used: 
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 Such generalization of the Chebyshev-Laguerre series 
in the basis allows for application of all properties of the 
Chebyshev-Laguerre polynomials at their investigation. The 
need to introduce the integral transform (2) is explained 
especially by the necessity for the processing of fast 
oscillating signals, for example of the f(t)=(t)sin(a/t+b) type, 
where (t) is a limited function at t0, and both a and b are 
constants. The approximation of function f(t) by its given 
classical orthogonal polynomial close to zero is connected 
with considerable calculation difficulties, i.e. instability of 
calculation, because the number of oscillations increases if 
argument tends to zero. 
 2. The integral transform (2) is used for the information 
filtration in linear filter models which are described by the 
convolution type integral equations: 
(5)
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where k(t) is the kernel of the equation, (t) is the output 
signal, f(t) is the signal to be found,  and β are any finite 
nonzero parameters. The equations of such type 
adequately describe fast time-varying processes in some 
neighbourhood around the origin of the coordinate system. 
The reasonable choice of the parameters of the integral 
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transform (2) allows to take into account the singularities of 
behaviour of the solution in the origin of coordinate system. 
As in the literature the integral transforms of type (1) are 
well studied, then some identity transforms of introduced 
integral convolution should be done. Because of the 
additive property of the integral, the equation (5) can be 
rewritten as follows: 
(6)
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where h0 is a constant which depends on boundary values 
of the functions f(t) and (t). Putting t=x-, a shorter formula 
can be derived: 
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 Let us create an algorithm for solving the following 
integral equation: 
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in the Chebyshev-Laguerre basis )t(Ln
 , λ>1, 

0h)t()t(y   . In order to restore the function, the 

unknown coefficients fn should be determined. 
 Integrating the equation (8) by parts, the expression (9) 
is obtained: 
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For λ=0: 
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then substituting the functions in subintegral expression 
with orthogonal Fourier series one can establish the 
following relationships: 
(11) 
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Here km, fm are the Fourier-Laguerre coefficients of the 
functions k(t) and f(t) If the Fourier-Laguerre sums are 
substituted into the above formula for the functions in (9), 
then equating the coefficients at the same order 
Chebyshev-Laguerre polynomials, the formula for 
determination of unknown coefficients can be achieved: 

(12) 
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As the coefficients km and yn are known, the Lagguere 
spectrum of unknown function f(t) is defined by the formula 
(12). Hence, the equation (8) is solved. 
 One of the advantages of the proposed method is that 
the discretization is eliminated as the integral convolution is 
transformed into the series convolution. It is known that the 
discretization is sensitive to input error which takes place if 
the input information is given in discrete form with not high 

accuracy. The quadrature formula (4) and recurrence 
formula (12) allow to calculate a limited number of the first 
values of Fourier-Laguerre spectrum. In [1] the asymptotic 
formulae for calculation of the values of Fourier-Laguerre 
spectrum at large n are given. This allows to create a more 
precise algorithm for restoring of the searching function f(t) 
with a reasonable accuracy. The algorithm of the restoring 
of the searching solution by known values of the 
generalized spectrum as the follows:  
- for small orders of the spectrum the corresponding 
values are calculated by formula (4); 
- on the basis of an a priori information about the 
searched solution, the asymptotic formulae for calculating 
the values of higher-order spectra are created; 
- the evaluation of the overall error of calculations which 
consists of the input data error, the method error and the 
rounding error is obtained; 
- on the basis of the received evaluations the parameters 
for obtaining the solution with required accuracy (the 
number of terms of orthogonal series, needed accuracy of 
input information) are found; 
- knowing these parameters the solution is restored by 
the formula (3). 
 It should be noted that in the case if an a priori 
information is insufficient for determining the asymptotic 
distributions of orthogonal spectra, certain numerical 
methods, based on the analytical form of the dependencies 
of the spectrum on their orders, are elaborated. 
 By the a priori information we mean the information 
about the smoothness of the original and the existence of 
the first order discontinuities, singular points of the image, 
information about its behaviour in the infinity, and 
information about asymptotic behaviour of the original in 
zero and in infinity. It is possible to calculate the values of 
the image with guaranteed accuracy and to evaluate the 
divergence between the accurate and approximate values 
of a generalized spectrum. 
 By “calculation with guaranteed accuracy” we mean 
such organization of the calculation process that at all 
intermediate stages the computer errors of the arithmetical 
operations of such order are eliminated so that provides the 
accuracy of the final result is established. 
 3. When digital information is processed, not only the 
approximation signal values but also the signal derivatives 
values are used. If the input data are given with a fixed pitch 
and their accuracy is poor, the search for the derivative of a 
given function is more suitable to be obtained as the 
solution of the following equation: 
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 If the solution has the form of a series 
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then the unknown coefficients nf  are calculated as: 
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where kn and yn are the Fourier-Laguerre coefficients of 
functions k(t) and y(t), respectively.  

 If the values of y(t) in the points ti, where ti ( N,i 1 ) are 

the roots of polynomial )t(L f
N


1 , are given, then the 

coefficients yn are calculated as: 
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In this case, the coefficients kn can be calculated accurately. 
If the function k(t) is decomposed into the series (14), then  
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As k(t)=tl-1, then 
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and we obtain the following formula: 
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 For such choice of the parameter λk, the coefficients that 
should be found would be calculated using the following 
formula: 
(20)  )!1/(  lyf nn . 
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The algorithm of calculation of l-th order derivative of a 
function ( )f t  can be described as follows: 

1. By given the values f(ti) ( N,i 0 ) in the polynomial 
roots, the coefficients fn are calculated using the formula 
(12) at fl   . 

2. The values of the l-th order derivatives are calculated 
substituting the values from (14), whereas the values of the 
coefficients fn are calculated from (21). 
Let us consider the use of proposed method for 
approximation of the temperature data in the output of a 
compression station. The values of the temperature 
determined at the input of the compression station are 
shown in Fig. 1. 
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Fig. 1. The dependence of the measured temperature T [oC] on the 
time t [hours) at the input of compression station 
 

 The values of the temperature determined at the output 
of the compression station and calculated by proposed 
method are given in Fig. 2. 
 

 
Fig. 2. The dependence of the temperature T (oC) on time t (in 
hours) at the output of compression station: (1) the measured 
values, and (2) the values calculated by the proposed method 
 
 The observed dependencies confirm the necessity of 
conducting the abovementioned investigations. 
 
Conclusions 

The establishing of the functional relationship with 
continuous derivative which describes the sensor output 
data improves the measurement accuracy. The inserting of 
the argument µt into the Chebyshev-Laguerre transform 
allows to eliminate the calculation difficulties, which 
otherwise make it impossible to find effective solution of the 
problem of digital information processing in the case of the 
oscillating transfer functions of measuring devices. 
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