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Robust H∞ state feedback control for singular systems:  
A parameter-dependent approach 

 
 

Abstract. The robust H∞ state feedback control problem for both continuous- and discrete-time singular systems with polytopic-type uncertainties is 
revisited via a parameter-dependent approach. Attention is focused on the design of a parameter-dependent state feedback controller, such that the 
closed-loop system is admissible with prescribed H∞ noise attenuation level for all parameter uncertainties. Without using decomposition technique to 
the singular model, sufficient condition for the existence of an H∞ state feedback controller is expressed in terms of strict linear matrix inequalities 
(LMIs). In case that the LMI conditions are feasible, a suitable state feedback control law is explicitly given. The proposed approach is expected to 
be less conservative compared with previous results. Numerical examples are also provided to show the effectiveness of the approach. 
 
Streszczenie. Analizowany jest odporny system sterowania ze sprzężeniem zwrotnym H∞ dla przypadku systemu dyskretnego i ciągłego i z 
niepewnościami typu polytopic. Do analizy wykorzystuje się metodę zależności parametrycznych. Sterownik opisany jest liniową macierzą 
nierówności LMI. (Odporne sterowanie ze sprzężeniem zwrotnym H∞  - metoda zależności parametrycznych)  
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Introduction 
Analysis and design of singular systems (also referred 

to as descriptor systems, generalised state-space systems 
or differential-algebraic systems) have received great 
attention in the last decades. This is because, for many 
practical systems such as robotics, power systems, 
networks, economical systems, and highly interconnected 
large-scale systems, singular model is a natural 
mathematical representation and provides a description of 
algebraic constraints between physical variables (see, e.g. 
[1]-[4] and the references therein). 

In the last years, many fundamental system theories 
developed for standard state space system have been 
successfully extended to their counterparts for singular 
system, including the analysis and design of robust control  
[5]-[12] and filtering systems [13]-[16]. More precisely, 
necessary and sufficient conditions for H∞ control of singular 
systems with or without uncertainties have been derived in 
[7] and [6], respectively. In the discrete-time setting, the 
sufficient and necessary condition for the H∞ control 
problem has been presented by Xu and Yang [8]. For 
nonlinear singular systems, [10] and [12] have considered 
both the state feedback and output feedback control for 
continuous and discrete-time case, respectively; a 
necessary conditions for the output feedback control 
problem to be solvable are obtained in terms of two 
Hamilton-Jacobi inequalities plus a weak coupling condition. 
Recently, [13] presented the robust H∞ sate feedback 
control for uncertain discrete singular systems in terms of 
strict LMIs. Very recently, the reduced-order H∞ and L2 - L∞ 

filtering are addressed for singular systems in [16]-[18]; the 
necessary and sufficient conditions for the solvability of this 
problem in terms of LMIs and a coupling non-convex rank 
constraint are obtained, and an explicit parameterisation of 
all desired reduced-order filters is presented. The 
monograph [1] gives an excellent overview of the robust 
control and filtering for singular systems. In those results, 
only norm-bounded parameter uncertainties are considered. 
Although norm-bounded parameter uncertainties are 
important to consider, most uncertain systems models are 
much better described by polytopic structures (see e.g., 
[19]). Indeed, polytopic structures arise naturally when there 
are multiple real-valued uncertain parameters. Using norm-
bounded structures typically over-estimates the 
uncertainties in the system [20]. 

On the other hand, for standard state space systems, 
many efforts have been made in the direction of reducing 
the conservativeness of the analysis and design methods 
for improving the systems performance (see e.g. [21]-[26] 
and the references therein). In order to reduce the 
conservatism of traditional Lyapunov function methods, 
[21]-[23] proposed a new approach known as the 
parameter-dependent Lyapunov method, to the study of 
robust stability of systems with parametric uncertainties. 
Similar ideas have been subsequently developed to 
investigate the stability analysis, control and filtering 
synthesis problems in a few contexts (see, [24]-[29], and 
the references therein). To further reduce the 
conservativeness, in [30], a structured polynominal 
parameter-dependent approach is proposed for robust H2 

filtering of linear uncertain systems. For uncertain singular 
systems, the problem of robust filtering is discussed in [20] 
in the minimum-variance (or H2) setting, using LMI method 
and singular value decomposition. In recent years, 
uncertain singular systems with time-delay obtained much 
attention and a great number of fundamental results on 
controller or filter design have been reported. For example, 
Ma and Liu et al. have discussed robust stochastic stability 
and stabilization of time-delay discrete Markovian jump 
singular systems with norm-bounded parameter 
uncertainties [31]. Zhu and Zhang et al. have investigated 
the delay-dependent robust stability criteria for two classes 
of singular time-delay systems with norm-bounded 
uncertainties without using model transformation and 
bounding technique for cross terms [32]. Very recently, the 
problem of delay-dependent robust stabilization for norm-
bounded uncertain singular systems has been investigated 
based on the free-weighting-matrix approach and LMIs in 
[33]. The works mentioned are concerned with the norm-
bounded uncertainties, and only delay-dependent results 
are derived. To the best of our knowledge, however, for the 
parameter-dependent robust H∞ state feedback controller 
design for singular systems with polytopic uncertainties, 
there is no result in the literature so far, which still remains 
open and challenging. 

This paper is devoted to studying the robust H∞ state 
feedback control problem for singular systems with 
polytopic-type uncertainties, namely the matrices in the 
system model are uncertain and assumed to belong to a 
given polytopic set. Attention is focused on the design of a 
parameter-dependent state feedback control law, such that 
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the resulting closed-loop system is admissible while the 
norm of close-loop transfer function is optimised or lower 
than a prescribed H∞ norm. Both continuous- and discrete-
time cases are considered in this paper. The remainder of 
this paper is organised as follows. In Section 2 the problem 
under consideration is stated. The discrete- and continuous-
time cases are considered in Section 3 and Section 4, 
respectively. Two practical examples are given in Section 5, 
by which followed Section 6 concluding the paper. 

 

Problem formulation 
Consider the following singular system: 

 (1a)                1( ) ( ) ( ) ( )E x t Ax t B u t B t                              

 (1b)                 ( ) ( ) ( )z t Cx t Du t    

where ( ) nx t  , ( ) mu t  , ( ) qz t  are the state vector, 

control input, and the controlled output, respectively; 

( ) pt  is the disturbance input which belongs to 

L2 [0, ) .     stands for the shift operator for discrete-time 

systems and the derivate operator for continuous-time 

systems. The matrix n nE  may be singular with 

rankE  r n . A, B1, B, C, and D are appropriately 
dimensioned matrices. We first introduce the following 
definitions for the continuous-time (Definition 1) and 
discrete-time (Definition 2) system, respectively. 
Definition 1 [1-3]: 
(i) The pair ( ,E A ) is said to be regular if det( )sE A  is not 

identically zero. 
(ii) The pair ( ,E A ) is said to be impulse-free if 

deg(det( )) rank( )sE A E  . 

(iii) The pair ( ,E A ) is said to be stable if all the roots of 

det( ) 0sE A   have negative real parts. 

(iv) The pair ( ,E A ) is said to be admissible if it is regular, 
impulse-free and stable. 
Definition 2 [1-3]: 
(i) The pair ( ,E A ) is said to be regular if det( )zE A  is not 

identically zero. 
(ii) The pair ( ,E A ) is said to be casual if 

deg(det( )) rank( )zE A E  . 

(iii) The pair ( ,E A ) is said to be stable if all the roots of 

( , ) 1E A  . 

(iv) The pair ( ,E A ) is said to be admissible if it is regular, 
casual and stable. 
The operators det( ) , deg( ) , and ( , )    stands for the 

determinant of a matrix, degree of a polynomial, and the 
generalized spectral radius of the matrices pair, 
respectively. 

In this paper, we assume that the matrices A, B1, B, C, 
and D, which have partially unknown parameters, belong to 
the following uncertain polytope 
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In this paper, we consider the following linear state 
feedback controller 
(3)                                 ( ) ( )u t Kx t                                      

where the sate feedback gain m nK   is a constant 
matrix to be determined. Applying the controller (3) to (1) 
results in the following closed-loop system 

(4a)                           ( ) ( ) ( )cE x t A x t B t     

(4b)                             ( ) ( )cz t C x t                     

where 1cA A B K  , cC C DK          

The robust H∞ state feedback control problem we 
address in this paper is to obtain the state feedback gain K 
in (3) such that the closed-loop system (4) is regular, causal 
(for discrete-time systems) or impulse-free (for continuous-
time systems), and stable for zero initial condition of x(t) 
and ( ) 0t  , while the transfer function of the closed-loop 

system satisfies a prescribed H∞ performance level for all 
admissible parameter uncertainties in (2). It is worth 
mentioning that the robust H∞ state feedback control 
problem for uncertain systems has been addressed before, 
(see e.g. [7], [13]), but the results therein are parameter-
independent and the uncertainties therein are norm-
bounded, which will result in performance conservatism. 
This paper is contributed to design the parameter-
dependent robust H∞ state feedback controller for polytopic 
uncertain singular systems using a strict LMI technique. 

 

Discrete-time case 
In this section, we shall concentrate our attention on the 

robust H∞ state feedback controller design for discrete-time 
singular systems. First, a strict LMI condition concerning the 
H∞ performance for singular systems is given in the 
following lemma [1]. 
Lemma 1: Given a scalar 0  , the closed-loop system 

(4) is admissible with guaranteed H∞ noise attenuation level 
  if and only if there exist matrices 0P   and Q such that 

the following LMI holds: 

(5)            
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T T T T
c c c c c c
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c c
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where ( )n n rS    is any matrix with full column rank and 

satisfies 0TE S  , asterisks (*) stand for entries that are 
easily inferred from symmetry. 
Note that 

T

 
    

where   denotes the transfer function of the system 

{ , , , }c c cE A B C , while T  the transfer function of the dual 

system { , , , }T T T T
c c cE A C B . Then, by Lemma 1, it is not 

difficult to obtain the following corollary. 
Corollary 1: Given a scalar 0  , the closed-loop system 

(4) is admissible with guaranteed H∞ noise attenuation level 
  if and only if there exist matrices 0P   and Q such that 

(6)              
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c c
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where ( )n n rS    is any matrix with full column rank and 
satisfies 0ES  . 

Based on the results in Corollary 1, we give the 
following parameter-dependent strict LMI condition for the 
closed-loop system (4). 
Theorem 1: Given a scalar 0  , the system (4) is 

admissible with guaranteed H∞ noise attenuation level   if 
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and only if there exist matrices  1 2, , , , ,P Q Q F G J  with 

0P   satisfying 
(7)

1 20 0
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c c
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T
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where 1,Q  and 2Q  are partition of Q  in (6), i.e. 
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Q
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with ( )
1

n n rQ   , and ( )
2

p n rQ   . 

Proof: (Necessity) Suppose that there exist matrices 

 1 2, , , , ,P Q Q F G J  with 0P   such that (7) holds. Then, 

pre- and post- multiplying (7) by 

0 0 0

0 0

0 0 0 0

c

c c

A          I    

C   C        I

        I      
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and its transpose, we obtain (6) immediately. 
(Sufficiency) Suppose that there exist matrices 0P   and 
Q satisfying (6). Using Schur complement lemma [19], we 
have 
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where 33 1 1
T T T T

c cΘ EPE A SQ Q S A      . Then, (7) holds 

by choosing 

G P , 1
T

c cF A P A G Q S   , 2J I .           □ 

Remark 1: In the case when E I , it is to see that 0S  ; 
then, Corollary 1 reduces to the bounded real lemma (BRL) 
for standard state space systems. Accordingly, Theorem 1 
reduces to the parameter-dependent bounded real lemma 
same as in [29], which has been shown, both theoretically 
and through numerical examples, to be less conservative 
than the results using a common Lyapunov matrix for the 
entire uncertainty. Therefore, Theorem 1 can be viewed as 
an extension of parameter-dependent BRL for standard state 
space systems to singular systems. 
Remark 2: Comparing to the result in (6), the slack 

variables  , ,F G J  in (7) provides free dimensions in the 

solution space for the robust H∞ control problems and the 

matrices  1 2, ,P Q Q  in (7) is allowed to be dependent on 

the uncertain domain. Moreover, note that the (1,1) block of 

(7) implies that 0TG G P     , from which we can easily 
to conclude that 0G   and, in turn, G  is nonsingular. 

Now, we are in the position to design the robust H∞ state 
feedback controller using a parameter-dependent approach. 
Note that directly applying Theorem 1 would lead to bilinear 
matrix inequalities (BMIs), which are difficult to be solved 
numerically. However, it turns out that, applying appropriate 
congruence transformations, these BMIs can be 
transformed into LMIs. The next theorem gives a solution 
for the robust H∞ state feedback control problem using 
convexity arguments.  

Theorem 2: Given a scalar 0  , there exists a state 

feedback controller (3) such that the closed-loop system (4) 
is regular, casual and stable with disturbance attenuation 
level   for all uncertainties in (2), if there exists a solution 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2, , , , , , , ,i i i i i i iP Q Q F J M N G K  such that the 

following LMI holds:  
(9) 
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i i T i i T i i T i i T i i TΘ EP E A F B M F A M B     
. Then a suitable state feedback control law can be 
determined as 

(10)                            1( ) ( )
T

u t G K x t   

Proof: Define the (new) linearisation transformations  

(11)           TGK K , ( ) ( )i T iF K M , ( ) ( )i T iJ K N   
Then, the LMI in (9) follows immediately by substituting (4c) 
into (7) and taking the uncertainty set (2) into consideration. 
This completes the proof.                                           □ 

Remark 3: In Theorem 2, not only  ( ) ( ) ( )
1 2, ,i i iP Q Q  but the 

general slack matrices  ( ) ( ) ( ) ( ), , ,i i i iF J M N  are allowed to 

be dependent on the uncertain parameter. This is different 
from the results entails fixed matrices for the entire 
uncertainty domain, or the ones that need the slack 
variables to be fixed. It is worth mentioning that the 
uncertain-domain-dependent slack matrices provide further 
reduction of conservativeness, as depicted in Section 5. 

In the case E I , the singular system (1) reduces to a 
standard state space system, we have the following 
parameter-dependent result on robust H∞ state feedback 
control. 
Corollary 2: Considering the discrete-time state space 
system described by (1) when E I . There exists a control 
law in (3) to solve the robust H∞ state feedback control 

problem, if a solution  ( ) ( ) ( ) ( ), , , , ,i i i iP F M N G K  such that 

the following LMI holds:  
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for 1, ,i N  , where ( ) ( ) ( ) ( )
11 1

i i T i T i TΘ KB GA F   , 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
12 1 1

i i i i T i i T i i T i i TΘ P A F B M F A M B     
. Then a suitable state feedback control law can be 
determined as in (10). 
Remark 4: Design of optimal robust H∞ state feedback 
controller requires the solution of the following minimisation 
(13)                        

( ) ( )( ) ( ) ( ) ( ) ( )
1 2, , , , , , , ,

min   
i ii i i i iP Q Q F J M N G K

       

subject to the LMI constraint in (9). 
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Continuous-time case 
In this section, we consider the robust H∞ state feedback 

controller design for continuous-time singular systems. The 
results of Theorem 1 and Theorem 2 can be easily 
extended to the continuous-time case.  
Theorem 3: The closed-loop system (4) is admissible with 
guaranteed H∞ noise attenuation level   if and only if there 

exists a solution  , , ,P Q F G  with 0P   satisfying 
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Then, by following similar procedures as the discrete-
time case, we can obtain the following solution for the 
robust H∞ state feedback controller problem for continuous-
time singular systems. 
Theorem 4: Given a scalar 0  , there exists a state 

feedback controller (3) such that the closed-loop system (4) 
is regular, impulse-free and stable with disturbance 
attenuation level   for all uncertainties in (2), if a solution 

 ( ) ( ) ( ) ( ), , , , ,i i i iP Q F M G K  satisfies the following LMI:  
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for 1, ,i N  , where 
( ) ( ) ( ) ( ) ( ) ( )
11 1
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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i i i i i i T i T i T i T Φ A F B M F A M B    . If the 

LMI (15) are solvable, a suitable state feedback control law 
can be determined as (10). 
Remark 5: Similar to Theorem 2, the uncertain-domain-

dependent slack matrices  ( ) ( ),i iF M  provide further 

reduction of the conservativeness of the solutions. Design 
of optimal robust H∞ state feedback controller requires the 
solution of the minimisation problem in (13) with appropriate 
decision variables subject to the LMI constraint in (15). 

Similarly, in the case E I , we have the following 
parameter-dependent result on design of robust H∞ state 
feedback controller for continuous-time state space 
systems.  
Corollary 3: Considering the continuous-time state space 
system described by (1) when E I . There exists a state 
feedback controller (3) to solve the robust H∞ state feedback 
control problem, if there exists a solution 

 ( ) ( ) ( ), , , ,i i iP F M G K  satisfies the following LMI:  
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for 1, ,i N  , where ( ) ( ) ( ) ( ) ( )
11 1

i i i T i T iΦ P KB GA F    , 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
12 1 1

i i i i i i T i T i T i T Φ A F B M F A M B    . If the LMI 

in (16) is feasible, then a desirable state feedback control 
law according to the solution can be constructed as in (10). 
 

Illustrative examples 
In this section, we give two examples to demonstrate 

the effectiveness of the proposed approach. 
Example 1: Consider the electrical uncertain circuit system, 
which is adapted from [34], described by (1) with the 
following parameter: 

3 0 0

0 2 0

0 0 0

    

E      

     

 
   
  

, 

2 0.1 1 1

0 1 0.1 0

1 0 0

            

A               

                             




   
    
  

, 

1

0

1

1

B B  

 
    
  

,  0 1 0.1 0C           , 0D   

where 1   and 1  . Our objective is to construct a 

state feedback controller in (3) such that the resulting close-
loop system is admissible with H∞ noise attenuation level  . 

Note that the system can be represented as a four-vertex 
polytopic system, and this system without parameter 
uncertainties is not impulse free. To this end, we choose 

 0 0 1
T

S      . When setting 0.3   and using MATLAB 

LMI Control Toolbox to solve the LMI (15), we obtain the 
following solution 

2 1368 0 0332 0 3339

0 1387 0 0860 0 0555

0 8085 0 0263 2 7155

 .   .   .

G .    .      .

.     .      .  

  
   
  

, 

1.1668

2.0628

0 2676

  

K

  .

 
   
  

 

Then, by Theorem 4, a parameter-dependent robust H∞ 

state feedback control law can be obtained as 

 ( ) 0 2173 23 8039 0 2640 ( )u t .   .    . x t  . 

Example 2: Consider the discrete-time model for a DC 
motor in a hydraulic system borrowed from [35]: 

1

2

1

2

( 1)1 0 0.4121 0.8113

0 0 ( 1) 0.345 0.345 1

( ) 1 1
( ) ( )

( ) 1 1

x t               

   x t        

x t
u t t

x t

 




      
            

     
      
    

 

where 1( )x t  is the axis speed, 2 ( )x t  is the armature 

current, and ( )t  is the disturbance with unknown 

statistics. The uncertain parameters, 1   and 1  , 

are resulted from the viscous-friction coefficient, torque 
constant, and the motor back-EMF constant may not be 
measured exactly. Here we suppose that the computational 
delay are relative small and can be neglected, and that the 
controlled output 1( ) ( )y t x t . 

Table 1 presents a comparison of the number of 
variables (complexity) and the obtained minimum feasible 

   by using Theorem 2 according the following two cases: 

(a)  ( ) ( ) ( ) ( ), , ,i i i iF J M N  parameter-independent with 

 ( ) ( ) ( )
1 2, ,i i iP Q Q  parameter-dependent; 

(b) Both  ( ) ( ) ( ) ( ), , ,i i i iF J M N  and  ( ) ( ) ( )
1 2, ,i i iP Q Q  are 

parameter-dependent. 
In order to show the less conservatism of our results, 

the parameter-independent robust H∞ state feedback control 
in [13] is provided in Table 1. From the table, it can be seen 
that the proposed approach achieves better H∞ performance 

bounds with the fixed  ( ) ( ) ( ) ( ), , ,i i i iF J M N  than the 

parameter-independent ones. The performance is further 

improved when both  ( ) ( ) ( ) ( ), , ,i i i iF J M N  and 
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 ( ) ( ) ( )
1 2, ,i i iP Q Q  are parameter-dependent. The optimal 

performance index achieved is 0.1007    and the 

corresponding parameter and control law are 

0 0082 0 2968

0 2924 2 5250

.    .
G

.      .  

 
  
 

, 
0.0321

0 2486
K

  .

 
  
 

 

 ( ) 0 0668 0 1062 ( )u t .     .  x t  . 

Besides, the number of decision variables, the 
computational burden (we run the algorithms on the same 
PC with 2.0G CPU, 1.0G RAM, and WINDOWS XP 
operation system) for the three scenarios are compared 
(see Table 1). Through comparison, we can see that 
although the number of decision variables increases as a 
tradeoff to the reduced H∞ bound. However, the 
computational complexity does not increase seriously like 
the number of decision variables. This is because, when 
optimizing the parameters, the polytope-dependent 
searching algorithms (Theorem 1 in this paper) need less 
iterations than the parameter-independent searching 
algorithm (Theorem 3 in [13]). 

 

Table 1. Comparison of close-loop performances 

Method 
Theorem 1

case (a) 
Theorem 1 

case (b) 
Theorem 3 

in [13] 
Minimum   0.1592 0.1007 0.1875 

No. of decision 
variables 

18 30 7 

Computational 
complexity (ms) 

59.8 67.2 42.3 

 

Conclusions 
The parameter-dependent robust H∞ state feedback 

control problem for singular systems with polytopic-type 
uncertainties has been addressed in this paper. Both 
continuous- and discrete-time cases have been considered. 
Sufficient condition for the existence of an H∞ state 
feedback controller was expressed in terms of strict LMIs. 
When these inequalities were feasible, explicit 
parameterisation of a desired H∞ state feedback control law 
has been presented. It was worth mentioning that the 
proposed approach was obtained without decomposition 
technique to the singular model and was less conservative. 
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